Violation of the Equivalence Principle in Non-Hermitian Fermion Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-01

AUTHORS

V. N. Rodionov, A. M. Mandel

ABSTRACT

Consequences of the non-Hermitian expansion of the Dirac equation in which the mass term is written in the form m → m1 + γ5m2 are considered. It is shown that such procedure inevitably leads to violation of the weak equivalence principle, i.e., causes an inequality of gravitational and inert fermion masses. However, if to relate the Hermitian, m1, and non-Hermitian, m2, masses by the additional condition m2/m1 = m1/2M ≤ 1, the possibility arises to preserve the equivalence principle for fermions of the standard model with high accuracy. In this case, the parameter M = const is the universal constant with dimensionality of mass that can be related to a maximum possible allowed fermion mass in this model. As a consequence of the same condition, a new class of solutions of the modified Dirac equation arises that describes particles whose properties make them obvious candidates for dark matter. More... »

PAGES

1-7

References to SciGraph publications

  • 2016-03. An algebraic PT-symmetric quantum theory with a maximal mass in PHYSICS OF PARTICLES AND NUCLEI
  • 1986-10. Spinorial analysis and physical properties of fermions in SOVIET PHYSICS JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9

    DOI

    http://dx.doi.org/10.1007/s11182-018-1545-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110332672


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Plekhanov Russian University of Economics", 
              "id": "https://www.grid.ac/institutes/grid.446263.1", 
              "name": [
                "Plekhanov Russian University of Economics, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodionov", 
            "givenName": "V. N.", 
            "id": "sg:person.011164524043.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State Technological University", 
              "id": "https://www.grid.ac/institutes/grid.446318.c", 
              "name": [
                "Moscow State Technological University \u201cSTANKIN,\u201d, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mandel", 
            "givenName": "A. M.", 
            "id": "sg:person.016055570534.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055570534.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.80.5243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002069901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.5243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002069901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.90.023816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007370597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.90.023816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007370597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063779616020052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014914283", 
              "https://doi.org/10.1134/s1063779616020052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00900740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029212476", 
              "https://doi.org/10.1007/bf00900740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00900740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029212476", 
              "https://doi.org/10.1007/bf00900740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2005.08.087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035025810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.70.044101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037420891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.70.044101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037420891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052348914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052348914"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12-01", 
        "datePublishedReg": "2018-12-01", 
        "description": "Consequences of the non-Hermitian expansion of the Dirac equation in which the mass term is written in the form m \u2192 m1 + \u03b35m2 are considered. It is shown that such procedure inevitably leads to violation of the weak equivalence principle, i.e., causes an inequality of gravitational and inert fermion masses. However, if to relate the Hermitian, m1, and non-Hermitian, m2, masses by the additional condition m2/m1 = m1/2M \u2264 1, the possibility arises to preserve the equivalence principle for fermions of the standard model with high accuracy. In this case, the parameter M = const is the universal constant with dimensionality of mass that can be related to a maximum possible allowed fermion mass in this model. As a consequence of the same condition, a new class of solutions of the modified Dirac equation arises that describes particles whose properties make them obvious candidates for dark matter.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11182-018-1545-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313824", 
            "issn": [
              "1064-8887", 
              "1573-9228"
            ], 
            "name": "Russian Physics Journal", 
            "type": "Periodical"
          }
        ], 
        "name": "Violation of the Equivalence Principle in Non-Hermitian Fermion Theory", 
        "pagination": "1-7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5f389c82e92c7e6c3403b7fa90f2df98a3679cb5409a30f995402d3089ebc4bc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11182-018-1545-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110332672"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11182-018-1545-9", 
          "https://app.dimensions.ai/details/publication/pub.1110332672"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000279_0000000279/records_91939_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11182-018-1545-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      21 PREDICATES      31 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11182-018-1545-9 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author Nddb99b1467d941b6a78102f5857bed68
    4 schema:citation sg:pub.10.1007/bf00900740
    5 sg:pub.10.1134/s1063779616020052
    6 https://doi.org/10.1016/0550-3213(78)90041-x
    7 https://doi.org/10.1016/j.physletb.2005.08.087
    8 https://doi.org/10.1103/physreva.70.044101
    9 https://doi.org/10.1103/physreva.90.023816
    10 https://doi.org/10.1103/physrevlett.80.5243
    11 schema:datePublished 2018-12-01
    12 schema:datePublishedReg 2018-12-01
    13 schema:description Consequences of the non-Hermitian expansion of the Dirac equation in which the mass term is written in the form m → m1 + γ5m2 are considered. It is shown that such procedure inevitably leads to violation of the weak equivalence principle, i.e., causes an inequality of gravitational and inert fermion masses. However, if to relate the Hermitian, m1, and non-Hermitian, m2, masses by the additional condition m2/m1 = m1/2M ≤ 1, the possibility arises to preserve the equivalence principle for fermions of the standard model with high accuracy. In this case, the parameter M = const is the universal constant with dimensionality of mass that can be related to a maximum possible allowed fermion mass in this model. As a consequence of the same condition, a new class of solutions of the modified Dirac equation arises that describes particles whose properties make them obvious candidates for dark matter.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf sg:journal.1313824
    18 schema:name Violation of the Equivalence Principle in Non-Hermitian Fermion Theory
    19 schema:pagination 1-7
    20 schema:productId N557fcd617fa3448c9c5c36f465aa9bab
    21 N5b3c263f2509428bbe5c732f34270137
    22 N5b9b408c80ee4790bef60b60106ec019
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110332672
    24 https://doi.org/10.1007/s11182-018-1545-9
    25 schema:sdDatePublished 2019-04-11T08:17
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N01226f2864a940a2b5495e24cc9af388
    28 schema:url https://link.springer.com/10.1007%2Fs11182-018-1545-9
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N01226f2864a940a2b5495e24cc9af388 schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 N3863a0b8889d4d52950d0e6fbef4976e rdf:first sg:person.016055570534.69
    35 rdf:rest rdf:nil
    36 N557fcd617fa3448c9c5c36f465aa9bab schema:name dimensions_id
    37 schema:value pub.1110332672
    38 rdf:type schema:PropertyValue
    39 N5b3c263f2509428bbe5c732f34270137 schema:name readcube_id
    40 schema:value 5f389c82e92c7e6c3403b7fa90f2df98a3679cb5409a30f995402d3089ebc4bc
    41 rdf:type schema:PropertyValue
    42 N5b9b408c80ee4790bef60b60106ec019 schema:name doi
    43 schema:value 10.1007/s11182-018-1545-9
    44 rdf:type schema:PropertyValue
    45 Nddb99b1467d941b6a78102f5857bed68 rdf:first sg:person.011164524043.88
    46 rdf:rest N3863a0b8889d4d52950d0e6fbef4976e
    47 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    48 schema:name Physical Sciences
    49 rdf:type schema:DefinedTerm
    50 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Astronomical and Space Sciences
    52 rdf:type schema:DefinedTerm
    53 sg:journal.1313824 schema:issn 1064-8887
    54 1573-9228
    55 schema:name Russian Physics Journal
    56 rdf:type schema:Periodical
    57 sg:person.011164524043.88 schema:affiliation https://www.grid.ac/institutes/grid.446263.1
    58 schema:familyName Rodionov
    59 schema:givenName V. N.
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88
    61 rdf:type schema:Person
    62 sg:person.016055570534.69 schema:affiliation https://www.grid.ac/institutes/grid.446318.c
    63 schema:familyName Mandel
    64 schema:givenName A. M.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055570534.69
    66 rdf:type schema:Person
    67 sg:pub.10.1007/bf00900740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029212476
    68 https://doi.org/10.1007/bf00900740
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1134/s1063779616020052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014914283
    71 https://doi.org/10.1134/s1063779616020052
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/0550-3213(78)90041-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052348914
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1016/j.physletb.2005.08.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035025810
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1103/physreva.70.044101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037420891
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1103/physreva.90.023816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007370597
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1103/physrevlett.80.5243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002069901
    82 rdf:type schema:CreativeWork
    83 https://www.grid.ac/institutes/grid.446263.1 schema:alternateName Plekhanov Russian University of Economics
    84 schema:name Plekhanov Russian University of Economics, Moscow, Russia
    85 rdf:type schema:Organization
    86 https://www.grid.ac/institutes/grid.446318.c schema:alternateName Moscow State Technological University
    87 schema:name Moscow State Technological University “STANKIN,”, Moscow, Russia
    88 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...