Violation of the Equivalence Principle in Non-Hermitian Fermion Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-01

AUTHORS

V. N. Rodionov, A. M. Mandel

ABSTRACT

Consequences of the non-Hermitian expansion of the Dirac equation in which the mass term is written in the form m → m1 + γ5m2 are considered. It is shown that such procedure inevitably leads to violation of the weak equivalence principle, i.e., causes an inequality of gravitational and inert fermion masses. However, if to relate the Hermitian, m1, and non-Hermitian, m2, masses by the additional condition m2/m1 = m1/2M ≤ 1, the possibility arises to preserve the equivalence principle for fermions of the standard model with high accuracy. In this case, the parameter M = const is the universal constant with dimensionality of mass that can be related to a maximum possible allowed fermion mass in this model. As a consequence of the same condition, a new class of solutions of the modified Dirac equation arises that describes particles whose properties make them obvious candidates for dark matter. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9

DOI

http://dx.doi.org/10.1007/s11182-018-1545-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110332672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Plekhanov Russian University of Economics", 
          "id": "https://www.grid.ac/institutes/grid.446263.1", 
          "name": [
            "Plekhanov Russian University of Economics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodionov", 
        "givenName": "V. N.", 
        "id": "sg:person.011164524043.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State Technological University", 
          "id": "https://www.grid.ac/institutes/grid.446318.c", 
          "name": [
            "Moscow State Technological University \u201cSTANKIN,\u201d, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandel", 
        "givenName": "A. M.", 
        "id": "sg:person.016055570534.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055570534.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002069901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002069901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.023816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.023816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063779616020052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014914283", 
          "https://doi.org/10.1134/s1063779616020052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00900740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029212476", 
          "https://doi.org/10.1007/bf00900740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00900740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029212476", 
          "https://doi.org/10.1007/bf00900740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2005.08.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035025810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.044101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037420891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.044101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037420891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052348914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052348914"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-01", 
    "datePublishedReg": "2018-12-01", 
    "description": "Consequences of the non-Hermitian expansion of the Dirac equation in which the mass term is written in the form m \u2192 m1 + \u03b35m2 are considered. It is shown that such procedure inevitably leads to violation of the weak equivalence principle, i.e., causes an inequality of gravitational and inert fermion masses. However, if to relate the Hermitian, m1, and non-Hermitian, m2, masses by the additional condition m2/m1 = m1/2M \u2264 1, the possibility arises to preserve the equivalence principle for fermions of the standard model with high accuracy. In this case, the parameter M = const is the universal constant with dimensionality of mass that can be related to a maximum possible allowed fermion mass in this model. As a consequence of the same condition, a new class of solutions of the modified Dirac equation arises that describes particles whose properties make them obvious candidates for dark matter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11182-018-1545-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "Violation of the Equivalence Principle in Non-Hermitian Fermion Theory", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f389c82e92c7e6c3403b7fa90f2df98a3679cb5409a30f995402d3089ebc4bc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-018-1545-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110332672"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-018-1545-9", 
      "https://app.dimensions.ai/details/publication/pub.1110332672"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000279_0000000279/records_91939_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11182-018-1545-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-018-1545-9'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      31 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-018-1545-9 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N54c0a001faf14af28d2ac4bc59b476ed
4 schema:citation sg:pub.10.1007/bf00900740
5 sg:pub.10.1134/s1063779616020052
6 https://doi.org/10.1016/0550-3213(78)90041-x
7 https://doi.org/10.1016/j.physletb.2005.08.087
8 https://doi.org/10.1103/physreva.70.044101
9 https://doi.org/10.1103/physreva.90.023816
10 https://doi.org/10.1103/physrevlett.80.5243
11 schema:datePublished 2018-12-01
12 schema:datePublishedReg 2018-12-01
13 schema:description Consequences of the non-Hermitian expansion of the Dirac equation in which the mass term is written in the form m → m1 + γ5m2 are considered. It is shown that such procedure inevitably leads to violation of the weak equivalence principle, i.e., causes an inequality of gravitational and inert fermion masses. However, if to relate the Hermitian, m1, and non-Hermitian, m2, masses by the additional condition m2/m1 = m1/2M ≤ 1, the possibility arises to preserve the equivalence principle for fermions of the standard model with high accuracy. In this case, the parameter M = const is the universal constant with dimensionality of mass that can be related to a maximum possible allowed fermion mass in this model. As a consequence of the same condition, a new class of solutions of the modified Dirac equation arises that describes particles whose properties make them obvious candidates for dark matter.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf sg:journal.1313824
18 schema:name Violation of the Equivalence Principle in Non-Hermitian Fermion Theory
19 schema:pagination 1-7
20 schema:productId N010aad3496da4cbaa5f6597a27f07fd4
21 N5e8000796a594c9cb0e2ab0c18b1d48b
22 Ndbc162e580274b63af392e28a0d1f4cd
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110332672
24 https://doi.org/10.1007/s11182-018-1545-9
25 schema:sdDatePublished 2019-04-11T08:17
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N49b55b51fcb94d14b45c7f2065126a15
28 schema:url https://link.springer.com/10.1007%2Fs11182-018-1545-9
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N010aad3496da4cbaa5f6597a27f07fd4 schema:name doi
33 schema:value 10.1007/s11182-018-1545-9
34 rdf:type schema:PropertyValue
35 N49b55b51fcb94d14b45c7f2065126a15 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N54c0a001faf14af28d2ac4bc59b476ed rdf:first sg:person.011164524043.88
38 rdf:rest N8f17a2ff79a048bfbffa94fca15e90d4
39 N5e8000796a594c9cb0e2ab0c18b1d48b schema:name readcube_id
40 schema:value 5f389c82e92c7e6c3403b7fa90f2df98a3679cb5409a30f995402d3089ebc4bc
41 rdf:type schema:PropertyValue
42 N8f17a2ff79a048bfbffa94fca15e90d4 rdf:first sg:person.016055570534.69
43 rdf:rest rdf:nil
44 Ndbc162e580274b63af392e28a0d1f4cd schema:name dimensions_id
45 schema:value pub.1110332672
46 rdf:type schema:PropertyValue
47 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
48 schema:name Physical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
51 schema:name Astronomical and Space Sciences
52 rdf:type schema:DefinedTerm
53 sg:journal.1313824 schema:issn 1064-8887
54 1573-9228
55 schema:name Russian Physics Journal
56 rdf:type schema:Periodical
57 sg:person.011164524043.88 schema:affiliation https://www.grid.ac/institutes/grid.446263.1
58 schema:familyName Rodionov
59 schema:givenName V. N.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88
61 rdf:type schema:Person
62 sg:person.016055570534.69 schema:affiliation https://www.grid.ac/institutes/grid.446318.c
63 schema:familyName Mandel
64 schema:givenName A. M.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055570534.69
66 rdf:type schema:Person
67 sg:pub.10.1007/bf00900740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029212476
68 https://doi.org/10.1007/bf00900740
69 rdf:type schema:CreativeWork
70 sg:pub.10.1134/s1063779616020052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014914283
71 https://doi.org/10.1134/s1063779616020052
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0550-3213(78)90041-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052348914
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/j.physletb.2005.08.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035025810
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1103/physreva.70.044101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037420891
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1103/physreva.90.023816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007370597
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1103/physrevlett.80.5243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002069901
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.446263.1 schema:alternateName Plekhanov Russian University of Economics
84 schema:name Plekhanov Russian University of Economics, Moscow, Russia
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.446318.c schema:alternateName Moscow State Technological University
87 schema:name Moscow State Technological University “STANKIN,”, Moscow, Russia
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...