Methodology of Laser Detection of Engine Exhaust Gases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10-09

AUTHORS

O. K. Voitsekhovskaya, D. V. Volkov, D. E. Kashirskii

ABSTRACT

An engineering technique for determining the thermodynamic parameters of a high-temperature gas volume is described on an example of water vapor. The suggested approach consists in exact calculation of the attenuation of the intensity of several laser lines in the gas volume for fixed intervals of temperature and partial pressure with the subsequent approximation of the transmission function depending on the thermodynamic parameters of the medium. The polynomial coefficients so obtained are then used to solve the inverse gas analysis problem for unknown partial pressures of gaseous components of the medium and its temperature. The technique is suitable for simultaneous remote monitoring of the gas temperature (from 400 to 1600 K) and partial pressure (from 0.025 to 0.2 atm) with an error no more than 10%. More... »

PAGES

657-666

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-013-0082-9

DOI

http://dx.doi.org/10.1007/s11182-013-0082-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036125981


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voitsekhovskaya", 
        "givenName": "O. K.", 
        "id": "sg:person.013140045043.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "D. V.", 
        "id": "sg:person.013127256711.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127256711.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashirskii", 
        "givenName": "D. E.", 
        "id": "sg:person.01177577127.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177577127.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011986625459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030117737", 
          "https://doi.org/10.1023/a:1011986625459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1541308x07010049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018511921", 
          "https://doi.org/10.3103/s1541308x07010049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11182-008-9070-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046255888", 
          "https://doi.org/10.1007/s11182-008-9070-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10946-005-0043-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033270618", 
          "https://doi.org/10.1007/s10946-005-0043-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10-09", 
    "datePublishedReg": "2013-10-09", 
    "description": "An engineering technique for determining the thermodynamic parameters of a high-temperature gas volume is described on an example of water vapor. The suggested approach consists in exact calculation of the attenuation of the intensity of several laser lines in the gas volume for fixed intervals of temperature and partial pressure with the subsequent approximation of the transmission function depending on the thermodynamic parameters of the medium. The polynomial coefficients so obtained are then used to solve the inverse gas analysis problem for unknown partial pressures of gaseous components of the medium and its temperature. The technique is suitable for simultaneous remote monitoring of the gas temperature (from 400 to 1600 K) and partial pressure (from 0.025 to 0.2 atm) with an error no more than 10%.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11182-013-0082-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "engine exhaust gases", 
      "gas analysis problem", 
      "gas volume", 
      "partial pressure", 
      "exhaust gases", 
      "gas temperature", 
      "water vapor", 
      "interval of temperatures", 
      "remote monitoring", 
      "gaseous components", 
      "laser detection", 
      "engineering techniques", 
      "temperature", 
      "thermodynamic parameters", 
      "pressure", 
      "vapor", 
      "suggested approach", 
      "parameters", 
      "gases", 
      "subsequent approximations", 
      "transmission function", 
      "technique", 
      "polynomial coefficients", 
      "coefficient", 
      "laser lines", 
      "analysis problem", 
      "volume", 
      "monitoring", 
      "attenuation", 
      "medium", 
      "error", 
      "methodology", 
      "exact calculation", 
      "calculations", 
      "components", 
      "approximation", 
      "problem", 
      "example", 
      "approach", 
      "intensity", 
      "detection", 
      "lines", 
      "function", 
      "intervals", 
      "high-temperature gas volume", 
      "inverse gas analysis problem", 
      "unknown partial pressures", 
      "simultaneous remote monitoring"
    ], 
    "name": "Methodology of Laser Detection of Engine Exhaust Gases", 
    "pagination": "657-666", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036125981"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-013-0082-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-013-0082-9", 
      "https://app.dimensions.ai/details/publication/pub.1036125981"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11182-013-0082-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0082-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0082-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0082-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0082-9'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      77 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-013-0082-9 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Nff734a2ffd1c46eba5cca61935a9bbd1
4 schema:citation sg:pub.10.1007/s10946-005-0043-z
5 sg:pub.10.1007/s11182-008-9070-x
6 sg:pub.10.1023/a:1011986625459
7 sg:pub.10.3103/s1541308x07010049
8 schema:datePublished 2013-10-09
9 schema:datePublishedReg 2013-10-09
10 schema:description An engineering technique for determining the thermodynamic parameters of a high-temperature gas volume is described on an example of water vapor. The suggested approach consists in exact calculation of the attenuation of the intensity of several laser lines in the gas volume for fixed intervals of temperature and partial pressure with the subsequent approximation of the transmission function depending on the thermodynamic parameters of the medium. The polynomial coefficients so obtained are then used to solve the inverse gas analysis problem for unknown partial pressures of gaseous components of the medium and its temperature. The technique is suitable for simultaneous remote monitoring of the gas temperature (from 400 to 1600 K) and partial pressure (from 0.025 to 0.2 atm) with an error no more than 10%.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N42a4109914af4fbd94dfa8ba23a3cb80
15 N84883c26ead7441a827d086af4b22d3c
16 sg:journal.1313824
17 schema:keywords analysis problem
18 approach
19 approximation
20 attenuation
21 calculations
22 coefficient
23 components
24 detection
25 engine exhaust gases
26 engineering techniques
27 error
28 exact calculation
29 example
30 exhaust gases
31 function
32 gas analysis problem
33 gas temperature
34 gas volume
35 gaseous components
36 gases
37 high-temperature gas volume
38 intensity
39 interval of temperatures
40 intervals
41 inverse gas analysis problem
42 laser detection
43 laser lines
44 lines
45 medium
46 methodology
47 monitoring
48 parameters
49 partial pressure
50 polynomial coefficients
51 pressure
52 problem
53 remote monitoring
54 simultaneous remote monitoring
55 subsequent approximations
56 suggested approach
57 technique
58 temperature
59 thermodynamic parameters
60 transmission function
61 unknown partial pressures
62 vapor
63 volume
64 water vapor
65 schema:name Methodology of Laser Detection of Engine Exhaust Gases
66 schema:pagination 657-666
67 schema:productId N6d185410334c420ea8a81a5d8e5cb5b9
68 N70d6101e15ff4b0ab9ef77a765913cc2
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036125981
70 https://doi.org/10.1007/s11182-013-0082-9
71 schema:sdDatePublished 2021-11-01T18:20
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N9e9d5c6328e94add9a11d179fa03820b
74 schema:url https://doi.org/10.1007/s11182-013-0082-9
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N42a4109914af4fbd94dfa8ba23a3cb80 schema:issueNumber 6
79 rdf:type schema:PublicationIssue
80 N673b1aa1a15c42368e9e58317de36810 rdf:first sg:person.013127256711.38
81 rdf:rest Nfd4804bbc2ce4ec7894838ba2bb1a368
82 N6d185410334c420ea8a81a5d8e5cb5b9 schema:name doi
83 schema:value 10.1007/s11182-013-0082-9
84 rdf:type schema:PropertyValue
85 N70d6101e15ff4b0ab9ef77a765913cc2 schema:name dimensions_id
86 schema:value pub.1036125981
87 rdf:type schema:PropertyValue
88 N84883c26ead7441a827d086af4b22d3c schema:volumeNumber 56
89 rdf:type schema:PublicationVolume
90 N9e9d5c6328e94add9a11d179fa03820b schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nfd4804bbc2ce4ec7894838ba2bb1a368 rdf:first sg:person.01177577127.94
93 rdf:rest rdf:nil
94 Nff734a2ffd1c46eba5cca61935a9bbd1 rdf:first sg:person.013140045043.23
95 rdf:rest N673b1aa1a15c42368e9e58317de36810
96 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
97 schema:name Technology
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
100 schema:name Nanotechnology
101 rdf:type schema:DefinedTerm
102 sg:journal.1313824 schema:issn 1064-8887
103 1573-9228
104 schema:name Russian Physics Journal
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.01177577127.94 schema:affiliation grid-institutes:grid.77602.34
108 schema:familyName Kashirskii
109 schema:givenName D. E.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177577127.94
111 rdf:type schema:Person
112 sg:person.013127256711.38 schema:affiliation grid-institutes:grid.77602.34
113 schema:familyName Volkov
114 schema:givenName D. V.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127256711.38
116 rdf:type schema:Person
117 sg:person.013140045043.23 schema:affiliation grid-institutes:grid.77602.34
118 schema:familyName Voitsekhovskaya
119 schema:givenName O. K.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23
121 rdf:type schema:Person
122 sg:pub.10.1007/s10946-005-0043-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033270618
123 https://doi.org/10.1007/s10946-005-0043-z
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11182-008-9070-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046255888
126 https://doi.org/10.1007/s11182-008-9070-x
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/a:1011986625459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030117737
129 https://doi.org/10.1023/a:1011986625459
130 rdf:type schema:CreativeWork
131 sg:pub.10.3103/s1541308x07010049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018511921
132 https://doi.org/10.3103/s1541308x07010049
133 rdf:type schema:CreativeWork
134 grid-institutes:grid.77602.34 schema:alternateName National Research Tomsk State University, Tomsk, Russia
135 schema:name National Research Tomsk State University, Tomsk, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...