Spectroscopic support of laser remote sensing of the sulfur dioxide gas in the jet of engine exhaust gases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08-16

AUTHORS

O. K. Voitsekhovskaya, D. E. Kashirskii, O. V. Egorov

ABSTRACT

The feasibility of SO2 registration in the plume of a jet engine as one of the methods of monitoring of its operation quality is investigated. Spectral characteristics are calculated using the line by line method, information-computing complex TRAVA developed by the authors, and the compiled spectroscopic database on high-temperature SO2. Unlike the HITRAN database, the original spectroscopic data possess predictability up to T = 1500 K. It is established that in case of active SO2 detection using a CO laser, the laser line corresponding to the 32-31 Р5 transition is promising for temperatures T = 300–1100 K. In addition, the most suitable range of the spectrum for passive sensing of hot SO2 in the engine plume – 1330.0–1331.6 cm–1 – is established in which the useful signal level exceeds background radiation for a minimum SO2 concentration (5 ppm). More... »

PAGES

473-482

References to SciGraph publications

  • 2005-09. Spectroscopic Detection of Sulfur Oxides in the Aircraft Wake in JOURNAL OF RUSSIAN LASER RESEARCH
  • 2007-03. Spectroscopic detection of aircraft wake gases in PHYSICS OF WAVE PHENOMENA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11182-013-0057-x

    DOI

    http://dx.doi.org/10.1007/s11182-013-0057-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021638345


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Voitsekhovskaya", 
            "givenName": "O. K.", 
            "id": "sg:person.013140045043.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kashirskii", 
            "givenName": "D. E.", 
            "id": "sg:person.01177577127.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177577127.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Egorov", 
            "givenName": "O. V.", 
            "id": "sg:person.01245712327.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245712327.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10946-005-0043-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033270618", 
              "https://doi.org/10.1007/s10946-005-0043-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1541308x07010049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018511921", 
              "https://doi.org/10.3103/s1541308x07010049"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-08-16", 
        "datePublishedReg": "2013-08-16", 
        "description": "The feasibility of SO2 registration in the plume of a jet engine as one of the methods of monitoring of its operation quality is investigated. Spectral characteristics are calculated using the line by line method, information-computing complex TRAVA developed by the authors, and the compiled spectroscopic database on high-temperature SO2. Unlike the HITRAN database, the original spectroscopic data possess predictability up to T = 1500 K. It is established that in case of active SO2 detection using a CO laser, the laser line corresponding to the 32-31 \u04205 transition is promising for temperatures T = 300\u20131100 K. In addition, the most suitable range of the spectrum for passive sensing of hot SO2 in the engine plume \u2013 1330.0\u20131331.6 cm\u20131 \u2013 is established in which the useful signal level exceeds background radiation for a minimum SO2 concentration (5 ppm).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11182-013-0057-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313824", 
            "issn": [
              "1064-8887", 
              "1573-9228"
            ], 
            "name": "Russian Physics Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "56"
          }
        ], 
        "keywords": [
          "passive sensing", 
          "operation quality", 
          "useful signal level", 
          "original spectroscopic data", 
          "database", 
          "sensing", 
          "remote sensing", 
          "engine", 
          "signal level", 
          "registration", 
          "method", 
          "line method", 
          "methods of monitoring", 
          "detection", 
          "feasibility", 
          "jet engines", 
          "quality", 
          "monitoring", 
          "support", 
          "data", 
          "predictability", 
          "laser lines", 
          "spectral characteristics", 
          "authors", 
          "characteristics", 
          "lines", 
          "suitable range", 
          "addition", 
          "cases", 
          "SO2 detection", 
          "engine plume", 
          "engine exhaust gases", 
          "laser remote sensing", 
          "exhaust gases", 
          "CO laser", 
          "background radiation", 
          "range", 
          "levels", 
          "dioxide gas", 
          "temperature T", 
          "sulfur dioxide gas", 
          "HITRAN database", 
          "spectroscopic data", 
          "SO2 concentration", 
          "spectroscopic database", 
          "spectroscopic support", 
          "plume", 
          "hot SO2", 
          "laser", 
          "spectra", 
          "SO2", 
          "jet", 
          "radiation", 
          "gas", 
          "gases", 
          "transition", 
          "cm-1", 
          "concentration", 
          "TRAVA", 
          "SO2 registration", 
          "information-computing complex TRAVA", 
          "complex TRAVA", 
          "high-temperature SO2", 
          "active SO2 detection", 
          "minimum SO2 concentration"
        ], 
        "name": "Spectroscopic support of laser remote sensing of the sulfur dioxide gas in the jet of engine exhaust gases", 
        "pagination": "473-482", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021638345"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11182-013-0057-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11182-013-0057-x", 
          "https://app.dimensions.ai/details/publication/pub.1021638345"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_598.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11182-013-0057-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0057-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0057-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0057-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-013-0057-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      22 PREDICATES      92 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11182-013-0057-x schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author N3c7f5230a9454023ba38a2cd84565f99
    4 schema:citation sg:pub.10.1007/s10946-005-0043-z
    5 sg:pub.10.3103/s1541308x07010049
    6 schema:datePublished 2013-08-16
    7 schema:datePublishedReg 2013-08-16
    8 schema:description The feasibility of SO2 registration in the plume of a jet engine as one of the methods of monitoring of its operation quality is investigated. Spectral characteristics are calculated using the line by line method, information-computing complex TRAVA developed by the authors, and the compiled spectroscopic database on high-temperature SO2. Unlike the HITRAN database, the original spectroscopic data possess predictability up to T = 1500 K. It is established that in case of active SO2 detection using a CO laser, the laser line corresponding to the 32-31 Р5 transition is promising for temperatures T = 300–1100 K. In addition, the most suitable range of the spectrum for passive sensing of hot SO2 in the engine plume – 1330.0–1331.6 cm–1 – is established in which the useful signal level exceeds background radiation for a minimum SO2 concentration (5 ppm).
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Na8fdc82bf1074a9e91a75f94fd4963fb
    13 Ndd4e442d73124bde9d0d75174e2aca31
    14 sg:journal.1313824
    15 schema:keywords CO laser
    16 HITRAN database
    17 SO2
    18 SO2 concentration
    19 SO2 detection
    20 SO2 registration
    21 TRAVA
    22 active SO2 detection
    23 addition
    24 authors
    25 background radiation
    26 cases
    27 characteristics
    28 cm-1
    29 complex TRAVA
    30 concentration
    31 data
    32 database
    33 detection
    34 dioxide gas
    35 engine
    36 engine exhaust gases
    37 engine plume
    38 exhaust gases
    39 feasibility
    40 gas
    41 gases
    42 high-temperature SO2
    43 hot SO2
    44 information-computing complex TRAVA
    45 jet
    46 jet engines
    47 laser
    48 laser lines
    49 laser remote sensing
    50 levels
    51 line method
    52 lines
    53 method
    54 methods of monitoring
    55 minimum SO2 concentration
    56 monitoring
    57 operation quality
    58 original spectroscopic data
    59 passive sensing
    60 plume
    61 predictability
    62 quality
    63 radiation
    64 range
    65 registration
    66 remote sensing
    67 sensing
    68 signal level
    69 spectra
    70 spectral characteristics
    71 spectroscopic data
    72 spectroscopic database
    73 spectroscopic support
    74 suitable range
    75 sulfur dioxide gas
    76 support
    77 temperature T
    78 transition
    79 useful signal level
    80 schema:name Spectroscopic support of laser remote sensing of the sulfur dioxide gas in the jet of engine exhaust gases
    81 schema:pagination 473-482
    82 schema:productId Nd7b926587a6545a8b6d832e77d2baf22
    83 Ne30962e2d60d45a69b38e8d57e5f9f1b
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021638345
    85 https://doi.org/10.1007/s11182-013-0057-x
    86 schema:sdDatePublished 2021-11-01T18:19
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher N7bf4ecfbb71f4a4bbe5f3cd0c6909b74
    89 schema:url https://doi.org/10.1007/s11182-013-0057-x
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N0e7fafa5a3704b15a3933c8cfef4fc31 rdf:first sg:person.01177577127.94
    94 rdf:rest N373bcf37f7e1447994c2c22d0591af01
    95 N373bcf37f7e1447994c2c22d0591af01 rdf:first sg:person.01245712327.74
    96 rdf:rest rdf:nil
    97 N3c7f5230a9454023ba38a2cd84565f99 rdf:first sg:person.013140045043.23
    98 rdf:rest N0e7fafa5a3704b15a3933c8cfef4fc31
    99 N7bf4ecfbb71f4a4bbe5f3cd0c6909b74 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 Na8fdc82bf1074a9e91a75f94fd4963fb schema:volumeNumber 56
    102 rdf:type schema:PublicationVolume
    103 Nd7b926587a6545a8b6d832e77d2baf22 schema:name doi
    104 schema:value 10.1007/s11182-013-0057-x
    105 rdf:type schema:PropertyValue
    106 Ndd4e442d73124bde9d0d75174e2aca31 schema:issueNumber 4
    107 rdf:type schema:PublicationIssue
    108 Ne30962e2d60d45a69b38e8d57e5f9f1b schema:name dimensions_id
    109 schema:value pub.1021638345
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Engineering
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Electrical and Electronic Engineering
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1313824 schema:issn 1064-8887
    118 1573-9228
    119 schema:name Russian Physics Journal
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.01177577127.94 schema:affiliation grid-institutes:grid.77602.34
    123 schema:familyName Kashirskii
    124 schema:givenName D. E.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177577127.94
    126 rdf:type schema:Person
    127 sg:person.01245712327.74 schema:affiliation grid-institutes:grid.77602.34
    128 schema:familyName Egorov
    129 schema:givenName O. V.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245712327.74
    131 rdf:type schema:Person
    132 sg:person.013140045043.23 schema:affiliation grid-institutes:grid.77602.34
    133 schema:familyName Voitsekhovskaya
    134 schema:givenName O. K.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23
    136 rdf:type schema:Person
    137 sg:pub.10.1007/s10946-005-0043-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033270618
    138 https://doi.org/10.1007/s10946-005-0043-z
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.3103/s1541308x07010049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018511921
    141 https://doi.org/10.3103/s1541308x07010049
    142 rdf:type schema:CreativeWork
    143 grid-institutes:grid.77602.34 schema:alternateName National Research Tomsk State University, Tomsk, Russia
    144 schema:name National Research Tomsk State University, Tomsk, Russia
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...