Surface-hardened nanostructured Ti- and Zr-matrix composites for medical and engineering applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Yu. P. Sharkeev, V. A. Kukareko, E. V. Legostaeva, A. V. Byeli

ABSTRACT

Combined studies have been conducted on the structural-phase state and physical-mechanical and tribological properties of nanostructured titanium and zirconium subjected to ion-beam implantation or microplasma oxidation. Low-temperature ion-beam nitriding of the materials examined is shown to provide a 25–35-fold increase in the wear resistance of their surface layers and a 40% decrease in the friction coefficient for tribological interaction with contact surfaces. Microplasma oxidation of titanium in aqueous solution of phosphoric acid, hydroxylapatite and calcium carbonate powders enables calcium-phosphate coatings with high physical-mechanical properties to be produced. Tribological tests in a dry friction regime and in isotonic solution of sodium chloride have revealed that a nanostructured titanium substrate-calcium phosphate coating biocomposite exhibits a fairly high friction coefficient (0.4–1.0) in tribological interactions with ultrahigh molecular-weight polyethylene or bone tissue. A substantial improvement in the tribotechnical properties of nanostructured titanium and zirconium with modified surface layers makes them very promising materials for medical and engineering applications. More... »

PAGES

1053-1059

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-011-9530-6

DOI

http://dx.doi.org/10.1007/s11182-011-9530-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035386520


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharkeev", 
        "givenName": "Yu. P.", 
        "id": "sg:person.07364365617.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364365617.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Joint Institute of Mechanical Engineering", 
          "id": "https://www.grid.ac/institutes/grid.494915.4", 
          "name": [
            "The Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kukareko", 
        "givenName": "V. A.", 
        "id": "sg:person.014676370341.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676370341.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legostaeva", 
        "givenName": "E. V.", 
        "id": "sg:person.011143300371.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143300371.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Technical Institute", 
          "id": "https://www.grid.ac/institutes/grid.482441.f", 
          "name": [
            "Physical-Technical Institute of the National Academy of Belarus, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Byeli", 
        "givenName": "A. V.", 
        "id": "sg:person.07757367133.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757367133.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1163/156855409x447174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002541522"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "Combined studies have been conducted on the structural-phase state and physical-mechanical and tribological properties of nanostructured titanium and zirconium subjected to ion-beam implantation or microplasma oxidation. Low-temperature ion-beam nitriding of the materials examined is shown to provide a 25\u201335-fold increase in the wear resistance of their surface layers and a 40% decrease in the friction coefficient for tribological interaction with contact surfaces. Microplasma oxidation of titanium in aqueous solution of phosphoric acid, hydroxylapatite and calcium carbonate powders enables calcium-phosphate coatings with high physical-mechanical properties to be produced. Tribological tests in a dry friction regime and in isotonic solution of sodium chloride have revealed that a nanostructured titanium substrate-calcium phosphate coating biocomposite exhibits a fairly high friction coefficient (0.4\u20131.0) in tribological interactions with ultrahigh molecular-weight polyethylene or bone tissue. A substantial improvement in the tribotechnical properties of nanostructured titanium and zirconium with modified surface layers makes them very promising materials for medical and engineering applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11182-011-9530-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Surface-hardened nanostructured Ti- and Zr-matrix composites for medical and engineering applications", 
    "pagination": "1053-1059", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a890eb860e3be58573f33ab215c169c23c66bd5e5324689b802e74a379399242"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-011-9530-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035386520"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-011-9530-6", 
      "https://app.dimensions.ai/details/publication/pub.1035386520"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11182-011-9530-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9530-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9530-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9530-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9530-6'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-011-9530-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd8ae478b07cc4a2db105d16b0b2d44a3
4 schema:citation https://doi.org/10.1163/156855409x447174
5 schema:datePublished 2011-03
6 schema:datePublishedReg 2011-03-01
7 schema:description Combined studies have been conducted on the structural-phase state and physical-mechanical and tribological properties of nanostructured titanium and zirconium subjected to ion-beam implantation or microplasma oxidation. Low-temperature ion-beam nitriding of the materials examined is shown to provide a 25–35-fold increase in the wear resistance of their surface layers and a 40% decrease in the friction coefficient for tribological interaction with contact surfaces. Microplasma oxidation of titanium in aqueous solution of phosphoric acid, hydroxylapatite and calcium carbonate powders enables calcium-phosphate coatings with high physical-mechanical properties to be produced. Tribological tests in a dry friction regime and in isotonic solution of sodium chloride have revealed that a nanostructured titanium substrate-calcium phosphate coating biocomposite exhibits a fairly high friction coefficient (0.4–1.0) in tribological interactions with ultrahigh molecular-weight polyethylene or bone tissue. A substantial improvement in the tribotechnical properties of nanostructured titanium and zirconium with modified surface layers makes them very promising materials for medical and engineering applications.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0ac3098560814494b05382537a53ba27
12 N2e4b0dbed4444b5f8e24ec9e097981ae
13 sg:journal.1313824
14 schema:name Surface-hardened nanostructured Ti- and Zr-matrix composites for medical and engineering applications
15 schema:pagination 1053-1059
16 schema:productId N15f1619c6be0454b93d2cd9700ff18e7
17 N1c3acd37703e42eaa8b79b25af638860
18 Nca4591a6b2d54bbca3bbd695a1dcecbf
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035386520
20 https://doi.org/10.1007/s11182-011-9530-6
21 schema:sdDatePublished 2019-04-11T02:10
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N0d6a8fcb2b01459a83b2fc9c5f07bf2e
24 schema:url http://link.springer.com/10.1007%2Fs11182-011-9530-6
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N0ac3098560814494b05382537a53ba27 schema:volumeNumber 53
29 rdf:type schema:PublicationVolume
30 N0d6a8fcb2b01459a83b2fc9c5f07bf2e schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N15f1619c6be0454b93d2cd9700ff18e7 schema:name dimensions_id
33 schema:value pub.1035386520
34 rdf:type schema:PropertyValue
35 N1c3acd37703e42eaa8b79b25af638860 schema:name doi
36 schema:value 10.1007/s11182-011-9530-6
37 rdf:type schema:PropertyValue
38 N2e4b0dbed4444b5f8e24ec9e097981ae schema:issueNumber 10
39 rdf:type schema:PublicationIssue
40 N582d4f6a0eb543439aba684f9dafadfc rdf:first sg:person.011143300371.47
41 rdf:rest N6bc2bc8ba0914ca1a95e3094afc4928c
42 N6bc2bc8ba0914ca1a95e3094afc4928c rdf:first sg:person.07757367133.79
43 rdf:rest rdf:nil
44 N8737a609f9964e398626af370c938eee rdf:first sg:person.014676370341.44
45 rdf:rest N582d4f6a0eb543439aba684f9dafadfc
46 Nca4591a6b2d54bbca3bbd695a1dcecbf schema:name readcube_id
47 schema:value a890eb860e3be58573f33ab215c169c23c66bd5e5324689b802e74a379399242
48 rdf:type schema:PropertyValue
49 Nd8ae478b07cc4a2db105d16b0b2d44a3 rdf:first sg:person.07364365617.30
50 rdf:rest N8737a609f9964e398626af370c938eee
51 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
52 schema:name Engineering
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
55 schema:name Materials Engineering
56 rdf:type schema:DefinedTerm
57 sg:journal.1313824 schema:issn 1064-8887
58 1573-9228
59 schema:name Russian Physics Journal
60 rdf:type schema:Periodical
61 sg:person.011143300371.47 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
62 schema:familyName Legostaeva
63 schema:givenName E. V.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143300371.47
65 rdf:type schema:Person
66 sg:person.014676370341.44 schema:affiliation https://www.grid.ac/institutes/grid.494915.4
67 schema:familyName Kukareko
68 schema:givenName V. A.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676370341.44
70 rdf:type schema:Person
71 sg:person.07364365617.30 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
72 schema:familyName Sharkeev
73 schema:givenName Yu. P.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364365617.30
75 rdf:type schema:Person
76 sg:person.07757367133.79 schema:affiliation https://www.grid.ac/institutes/grid.482441.f
77 schema:familyName Byeli
78 schema:givenName A. V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757367133.79
80 rdf:type schema:Person
81 https://doi.org/10.1163/156855409x447174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002541522
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
84 schema:name Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.482441.f schema:alternateName Physical Technical Institute
87 schema:name Physical-Technical Institute of the National Academy of Belarus, Minsk, Belarus
88 rdf:type schema:Organization
89 https://www.grid.ac/institutes/grid.494915.4 schema:alternateName The Joint Institute of Mechanical Engineering
90 schema:name The Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...