Ontology type: schema:ScholarlyArticle
2011-03-16
AUTHORSS. F. Gnyusov, V. P. Rotshtein, S. D. Polevin, S. A. Kitsanov
ABSTRACTComparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s–1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer. More... »
PAGES1046-1052
http://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z
DOIhttp://dx.doi.org/10.1007/s11182-011-9529-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032809928
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National Research Tomsk Polytechnic University, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.27736.37",
"name": [
"National Research Tomsk Polytechnic University, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Gnyusov",
"givenName": "S. F.",
"id": "sg:person.010154037433.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154037433.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tomsk State Pedagogical University, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.112471.0",
"name": [
"Tomsk State Pedagogical University, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Rotshtein",
"givenName": "V. P.",
"id": "sg:person.014133725731.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133725731.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Polevin",
"givenName": "S. D.",
"id": "sg:person.013474474211.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474474211.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Kitsanov",
"givenName": "S. A.",
"id": "sg:person.012662535153.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012662535153.50"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02645050",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012668752",
"https://doi.org/10.1007/bf02645050"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-03-16",
"datePublishedReg": "2011-03-16",
"description": "Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4\u00b71010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s\u20131. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.",
"genre": "article",
"id": "sg:pub.10.1007/s11182-011-9529-z",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1313824",
"issn": [
"1064-8887",
"1573-9228"
],
"name": "Russian Physics Journal",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "53"
}
],
"keywords": [
"shock wave loading",
"quasi-static tensile",
"quasi-static tension",
"maximum energy density",
"failure mechanism changes",
"SINUS-7 accelerator",
"shock wave amplitude",
"carbide interlayer",
"Hadfield steel",
"shock wave generator",
"deformation behavior",
"intergranular one",
"impact failure",
"spall fracture",
"plastic deformation",
"polycrystalline steel",
"strain localization",
"grain boundaries",
"electron beam parameters",
"energy density",
"steel",
"mechanism changes",
"loading",
"beam parameters",
"pulse duration",
"maximum electron energy",
"Charpy",
"tensile",
"ductile",
"spall",
"spallation",
"deformation",
"interlayer",
"accelerator",
"generator",
"fractures",
"cm2",
"GPa",
"energy",
"density",
"boundaries",
"parameters",
"comparative study",
"amplitude",
"tension",
"electron energy",
"behavior",
"ns",
"test",
"failure",
"rate",
"one",
"regularity",
"MeV",
"reasons",
"localization",
"changes",
"study",
"target",
"duration"
],
"name": "Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading",
"pagination": "1046-1052",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032809928"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11182-011-9529-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11182-011-9529-z",
"https://app.dimensions.ai/details/publication/pub.1032809928"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_544.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11182-011-9529-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
86 URIs
77 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11182-011-9529-z | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N2914364eb56c4bd88f48ca425ce6af4e |
4 | ″ | schema:citation | sg:pub.10.1007/bf02645050 |
5 | ″ | schema:datePublished | 2011-03-16 |
6 | ″ | schema:datePublishedReg | 2011-03-16 |
7 | ″ | schema:description | Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s–1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N0ba6956b86dc4b1bb71175788ebda4be |
12 | ″ | ″ | N6a2d9b768ca643d08e7dfce20e40fc77 |
13 | ″ | ″ | sg:journal.1313824 |
14 | ″ | schema:keywords | Charpy |
15 | ″ | ″ | GPa |
16 | ″ | ″ | Hadfield steel |
17 | ″ | ″ | MeV |
18 | ″ | ″ | SINUS-7 accelerator |
19 | ″ | ″ | accelerator |
20 | ″ | ″ | amplitude |
21 | ″ | ″ | beam parameters |
22 | ″ | ″ | behavior |
23 | ″ | ″ | boundaries |
24 | ″ | ″ | carbide interlayer |
25 | ″ | ″ | changes |
26 | ″ | ″ | cm2 |
27 | ″ | ″ | comparative study |
28 | ″ | ″ | deformation |
29 | ″ | ″ | deformation behavior |
30 | ″ | ″ | density |
31 | ″ | ″ | ductile |
32 | ″ | ″ | duration |
33 | ″ | ″ | electron beam parameters |
34 | ″ | ″ | electron energy |
35 | ″ | ″ | energy |
36 | ″ | ″ | energy density |
37 | ″ | ″ | failure |
38 | ″ | ″ | failure mechanism changes |
39 | ″ | ″ | fractures |
40 | ″ | ″ | generator |
41 | ″ | ″ | grain boundaries |
42 | ″ | ″ | impact failure |
43 | ″ | ″ | intergranular one |
44 | ″ | ″ | interlayer |
45 | ″ | ″ | loading |
46 | ″ | ″ | localization |
47 | ″ | ″ | maximum electron energy |
48 | ″ | ″ | maximum energy density |
49 | ″ | ″ | mechanism changes |
50 | ″ | ″ | ns |
51 | ″ | ″ | one |
52 | ″ | ″ | parameters |
53 | ″ | ″ | plastic deformation |
54 | ″ | ″ | polycrystalline steel |
55 | ″ | ″ | pulse duration |
56 | ″ | ″ | quasi-static tensile |
57 | ″ | ″ | quasi-static tension |
58 | ″ | ″ | rate |
59 | ″ | ″ | reasons |
60 | ″ | ″ | regularity |
61 | ″ | ″ | shock wave amplitude |
62 | ″ | ″ | shock wave generator |
63 | ″ | ″ | shock wave loading |
64 | ″ | ″ | spall |
65 | ″ | ″ | spall fracture |
66 | ″ | ″ | spallation |
67 | ″ | ″ | steel |
68 | ″ | ″ | strain localization |
69 | ″ | ″ | study |
70 | ″ | ″ | target |
71 | ″ | ″ | tensile |
72 | ″ | ″ | tension |
73 | ″ | ″ | test |
74 | ″ | schema:name | Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading |
75 | ″ | schema:pagination | 1046-1052 |
76 | ″ | schema:productId | Nb327f06d38ec4531a5bf86c48c16c7d5 |
77 | ″ | ″ | Nd404234568c445769bd1ce45651d769f |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032809928 |
79 | ″ | ″ | https://doi.org/10.1007/s11182-011-9529-z |
80 | ″ | schema:sdDatePublished | 2022-05-10T10:02 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | Ncf0101ae9fac482dae48efa69fca0bff |
83 | ″ | schema:url | https://doi.org/10.1007/s11182-011-9529-z |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | articles |
86 | ″ | rdf:type | schema:ScholarlyArticle |
87 | N0ba6956b86dc4b1bb71175788ebda4be | schema:issueNumber | 10 |
88 | ″ | rdf:type | schema:PublicationIssue |
89 | N2914364eb56c4bd88f48ca425ce6af4e | rdf:first | sg:person.010154037433.52 |
90 | ″ | rdf:rest | Nb9da95b27d784b59929751972ec02fde |
91 | N6a2d9b768ca643d08e7dfce20e40fc77 | schema:volumeNumber | 53 |
92 | ″ | rdf:type | schema:PublicationVolume |
93 | Nb327f06d38ec4531a5bf86c48c16c7d5 | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1032809928 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Nb9605a2edcbe4d4c905892d70a58b61d | rdf:first | sg:person.013474474211.54 |
97 | ″ | rdf:rest | Nd8f9f7b9930f44a9813c30e03ddcd6d3 |
98 | Nb9da95b27d784b59929751972ec02fde | rdf:first | sg:person.014133725731.52 |
99 | ″ | rdf:rest | Nb9605a2edcbe4d4c905892d70a58b61d |
100 | Ncf0101ae9fac482dae48efa69fca0bff | schema:name | Springer Nature - SN SciGraph project |
101 | ″ | rdf:type | schema:Organization |
102 | Nd404234568c445769bd1ce45651d769f | schema:name | doi |
103 | ″ | schema:value | 10.1007/s11182-011-9529-z |
104 | ″ | rdf:type | schema:PropertyValue |
105 | Nd8f9f7b9930f44a9813c30e03ddcd6d3 | rdf:first | sg:person.012662535153.50 |
106 | ″ | rdf:rest | rdf:nil |
107 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Engineering |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Materials Engineering |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | sg:journal.1313824 | schema:issn | 1064-8887 |
114 | ″ | ″ | 1573-9228 |
115 | ″ | schema:name | Russian Physics Journal |
116 | ″ | schema:publisher | Springer Nature |
117 | ″ | rdf:type | schema:Periodical |
118 | sg:person.010154037433.52 | schema:affiliation | grid-institutes:grid.27736.37 |
119 | ″ | schema:familyName | Gnyusov |
120 | ″ | schema:givenName | S. F. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154037433.52 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.012662535153.50 | schema:affiliation | grid-institutes:None |
124 | ″ | schema:familyName | Kitsanov |
125 | ″ | schema:givenName | S. A. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012662535153.50 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.013474474211.54 | schema:affiliation | grid-institutes:None |
129 | ″ | schema:familyName | Polevin |
130 | ″ | schema:givenName | S. D. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474474211.54 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.014133725731.52 | schema:affiliation | grid-institutes:grid.112471.0 |
134 | ″ | schema:familyName | Rotshtein |
135 | ″ | schema:givenName | V. P. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133725731.52 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1007/bf02645050 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012668752 |
139 | ″ | ″ | https://doi.org/10.1007/bf02645050 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | grid-institutes:None | schema:alternateName | High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia |
142 | ″ | schema:name | High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia |
143 | ″ | rdf:type | schema:Organization |
144 | grid-institutes:grid.112471.0 | schema:alternateName | Tomsk State Pedagogical University, Tomsk, Russia |
145 | ″ | schema:name | Tomsk State Pedagogical University, Tomsk, Russia |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.27736.37 | schema:alternateName | National Research Tomsk Polytechnic University, Tomsk, Russia |
148 | ″ | schema:name | National Research Tomsk Polytechnic University, Tomsk, Russia |
149 | ″ | rdf:type | schema:Organization |