Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03-16

AUTHORS

S. F. Gnyusov, V. P. Rotshtein, S. D. Polevin, S. A. Kitsanov

ABSTRACT

Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s–1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer. More... »

PAGES

1046-1052

References to SciGraph publications

  • 1988-09. Tensile fracture of coarse-Grained cast austenitic manganese steels in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z

    DOI

    http://dx.doi.org/10.1007/s11182-011-9529-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032809928


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research Tomsk Polytechnic University, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.27736.37", 
              "name": [
                "National Research Tomsk Polytechnic University, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gnyusov", 
            "givenName": "S. F.", 
            "id": "sg:person.010154037433.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154037433.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tomsk State Pedagogical University, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.112471.0", 
              "name": [
                "Tomsk State Pedagogical University, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rotshtein", 
            "givenName": "V. P.", 
            "id": "sg:person.014133725731.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133725731.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polevin", 
            "givenName": "S. D.", 
            "id": "sg:person.013474474211.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474474211.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitsanov", 
            "givenName": "S. A.", 
            "id": "sg:person.012662535153.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012662535153.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02645050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012668752", 
              "https://doi.org/10.1007/bf02645050"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-03-16", 
        "datePublishedReg": "2011-03-16", 
        "description": "Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4\u00b71010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s\u20131. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11182-011-9529-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313824", 
            "issn": [
              "1064-8887", 
              "1573-9228"
            ], 
            "name": "Russian Physics Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "keywords": [
          "shock wave loading", 
          "quasi-static tensile", 
          "quasi-static tension", 
          "maximum energy density", 
          "failure mechanism changes", 
          "SINUS-7 accelerator", 
          "shock wave amplitude", 
          "carbide interlayer", 
          "Hadfield steel", 
          "shock wave generator", 
          "deformation behavior", 
          "intergranular one", 
          "impact failure", 
          "spall fracture", 
          "plastic deformation", 
          "polycrystalline steel", 
          "strain localization", 
          "grain boundaries", 
          "electron beam parameters", 
          "energy density", 
          "steel", 
          "mechanism changes", 
          "loading", 
          "beam parameters", 
          "pulse duration", 
          "maximum electron energy", 
          "Charpy", 
          "tensile", 
          "ductile", 
          "spall", 
          "spallation", 
          "deformation", 
          "interlayer", 
          "accelerator", 
          "generator", 
          "fractures", 
          "cm2", 
          "GPa", 
          "energy", 
          "density", 
          "boundaries", 
          "parameters", 
          "comparative study", 
          "amplitude", 
          "tension", 
          "electron energy", 
          "behavior", 
          "ns", 
          "test", 
          "failure", 
          "rate", 
          "one", 
          "regularity", 
          "MeV", 
          "reasons", 
          "localization", 
          "changes", 
          "study", 
          "target", 
          "duration"
        ], 
        "name": "Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading", 
        "pagination": "1046-1052", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032809928"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11182-011-9529-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11182-011-9529-z", 
          "https://app.dimensions.ai/details/publication/pub.1032809928"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_544.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11182-011-9529-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-011-9529-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      22 PREDICATES      86 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11182-011-9529-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N2914364eb56c4bd88f48ca425ce6af4e
    4 schema:citation sg:pub.10.1007/bf02645050
    5 schema:datePublished 2011-03-16
    6 schema:datePublishedReg 2011-03-16
    7 schema:description Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s–1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N0ba6956b86dc4b1bb71175788ebda4be
    12 N6a2d9b768ca643d08e7dfce20e40fc77
    13 sg:journal.1313824
    14 schema:keywords Charpy
    15 GPa
    16 Hadfield steel
    17 MeV
    18 SINUS-7 accelerator
    19 accelerator
    20 amplitude
    21 beam parameters
    22 behavior
    23 boundaries
    24 carbide interlayer
    25 changes
    26 cm2
    27 comparative study
    28 deformation
    29 deformation behavior
    30 density
    31 ductile
    32 duration
    33 electron beam parameters
    34 electron energy
    35 energy
    36 energy density
    37 failure
    38 failure mechanism changes
    39 fractures
    40 generator
    41 grain boundaries
    42 impact failure
    43 intergranular one
    44 interlayer
    45 loading
    46 localization
    47 maximum electron energy
    48 maximum energy density
    49 mechanism changes
    50 ns
    51 one
    52 parameters
    53 plastic deformation
    54 polycrystalline steel
    55 pulse duration
    56 quasi-static tensile
    57 quasi-static tension
    58 rate
    59 reasons
    60 regularity
    61 shock wave amplitude
    62 shock wave generator
    63 shock wave loading
    64 spall
    65 spall fracture
    66 spallation
    67 steel
    68 strain localization
    69 study
    70 target
    71 tensile
    72 tension
    73 test
    74 schema:name Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading
    75 schema:pagination 1046-1052
    76 schema:productId Nb327f06d38ec4531a5bf86c48c16c7d5
    77 Nd404234568c445769bd1ce45651d769f
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032809928
    79 https://doi.org/10.1007/s11182-011-9529-z
    80 schema:sdDatePublished 2022-05-10T10:02
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher Ncf0101ae9fac482dae48efa69fca0bff
    83 schema:url https://doi.org/10.1007/s11182-011-9529-z
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N0ba6956b86dc4b1bb71175788ebda4be schema:issueNumber 10
    88 rdf:type schema:PublicationIssue
    89 N2914364eb56c4bd88f48ca425ce6af4e rdf:first sg:person.010154037433.52
    90 rdf:rest Nb9da95b27d784b59929751972ec02fde
    91 N6a2d9b768ca643d08e7dfce20e40fc77 schema:volumeNumber 53
    92 rdf:type schema:PublicationVolume
    93 Nb327f06d38ec4531a5bf86c48c16c7d5 schema:name dimensions_id
    94 schema:value pub.1032809928
    95 rdf:type schema:PropertyValue
    96 Nb9605a2edcbe4d4c905892d70a58b61d rdf:first sg:person.013474474211.54
    97 rdf:rest Nd8f9f7b9930f44a9813c30e03ddcd6d3
    98 Nb9da95b27d784b59929751972ec02fde rdf:first sg:person.014133725731.52
    99 rdf:rest Nb9605a2edcbe4d4c905892d70a58b61d
    100 Ncf0101ae9fac482dae48efa69fca0bff schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 Nd404234568c445769bd1ce45651d769f schema:name doi
    103 schema:value 10.1007/s11182-011-9529-z
    104 rdf:type schema:PropertyValue
    105 Nd8f9f7b9930f44a9813c30e03ddcd6d3 rdf:first sg:person.012662535153.50
    106 rdf:rest rdf:nil
    107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Materials Engineering
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1313824 schema:issn 1064-8887
    114 1573-9228
    115 schema:name Russian Physics Journal
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.010154037433.52 schema:affiliation grid-institutes:grid.27736.37
    119 schema:familyName Gnyusov
    120 schema:givenName S. F.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154037433.52
    122 rdf:type schema:Person
    123 sg:person.012662535153.50 schema:affiliation grid-institutes:None
    124 schema:familyName Kitsanov
    125 schema:givenName S. A.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012662535153.50
    127 rdf:type schema:Person
    128 sg:person.013474474211.54 schema:affiliation grid-institutes:None
    129 schema:familyName Polevin
    130 schema:givenName S. D.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474474211.54
    132 rdf:type schema:Person
    133 sg:person.014133725731.52 schema:affiliation grid-institutes:grid.112471.0
    134 schema:familyName Rotshtein
    135 schema:givenName V. P.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133725731.52
    137 rdf:type schema:Person
    138 sg:pub.10.1007/bf02645050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012668752
    139 https://doi.org/10.1007/bf02645050
    140 rdf:type schema:CreativeWork
    141 grid-institutes:None schema:alternateName High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
    142 schema:name High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
    143 rdf:type schema:Organization
    144 grid-institutes:grid.112471.0 schema:alternateName Tomsk State Pedagogical University, Tomsk, Russia
    145 schema:name Tomsk State Pedagogical University, Tomsk, Russia
    146 rdf:type schema:Organization
    147 grid-institutes:grid.27736.37 schema:alternateName National Research Tomsk Polytechnic University, Tomsk, Russia
    148 schema:name National Research Tomsk Polytechnic University, Tomsk, Russia
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...