The effect of water vapor on the electrical properties and sensitivity of thin-film gas sensors based on tin dioxide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08

AUTHORS

V. I. Gaman, O. V. Anisimov, N. K. Maksimova, N. V. Sergeichenko, E. Yu. Sevast’yanov, E. V. Chernikov

ABSTRACT

The results of theoretical and experimental studies into the effect of water vapor on the electrical conductance of a gas sensor and the sensor response to hydrogen action are discussed. A relation describing the dependence of electrical conductance G0 on absolute humidity in the pure air is derived using a hypothesis of the presence of space-charge regions depleted of electrons between the SnO2 grains in a polycrystalline tin dioxide film. Due to dissociative chemisorption of water molecules, the energy-band bending at the SnO2 grain interfaces decreases and the oxygen-vacancy concentration in the grains increases, resuling in an increase in G0. An equation for the sensor response to hydrogen action is derived (the G1/G0, ratio, where G1 is the sensor conductance in a gas mixture containing molecular hydrogen). The expression describes the dependence of G1/G0 on the hydrogen concentration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm n}_{{\rm H}_2 }$\end{document} in the interval 50–6·103 ppm, band bending at the SnO2 grain interface, and sensor temperature. The dependences of the sensor conductance, highest possible conductance, and energy-band bending on temperature and absolute humidity resulting from processing of the experimental data are in good agreement with the theoretical predictions. More... »

PAGES

831-839

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-009-9116-8

DOI

http://dx.doi.org/10.1007/s11182-009-9116-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017020913


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaman", 
        "givenName": "V. I.", 
        "id": "sg:person.016036107761.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016036107761.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anisimov", 
        "givenName": "O. V.", 
        "id": "sg:person.013377016601.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377016601.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimova", 
        "givenName": "N. K.", 
        "id": "sg:person.016364720601.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016364720601.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sergeichenko", 
        "givenName": "N. V.", 
        "id": "sg:person.015673006217.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673006217.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sevast\u2019yanov", 
        "givenName": "E. Yu.", 
        "id": "sg:person.013247056206.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247056206.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernikov", 
        "givenName": "E. V.", 
        "id": "sg:person.012052171001.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012052171001.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0925-4005(01)00754-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014842029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2006.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015154112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progsurf.2005.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016415490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2003.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039012973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-4005(94)01555-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048285243"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "The results of theoretical and experimental studies into the effect of water vapor on the electrical conductance of a gas sensor and the sensor response to hydrogen action are discussed. A relation describing the dependence of electrical conductance G0 on absolute humidity in the pure air is derived using a hypothesis of the presence of space-charge regions depleted of electrons between the SnO2 grains in a polycrystalline tin dioxide film. Due to dissociative chemisorption of water molecules, the energy-band bending at the SnO2 grain interfaces decreases and the oxygen-vacancy concentration in the grains increases, resuling in an increase in G0. An equation for the sensor response to hydrogen action is derived (the G1/G0, ratio, where G1 is the sensor conductance in a gas mixture containing molecular hydrogen). The expression describes the dependence of G1/G0 on the hydrogen concentration \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}${\\rm n}_{{\\rm H}_2 }$\\end{document} in the interval 50\u20136\u00b7103 ppm, band bending at the SnO2 grain interface, and sensor temperature. The dependences of the sensor conductance, highest possible conductance, and energy-band bending on temperature and absolute humidity resulting from processing of the experimental data are in good agreement with the theoretical predictions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11182-009-9116-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "The effect of water vapor on the electrical properties and sensitivity of thin-film gas sensors based on tin dioxide", 
    "pagination": "831-839", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5118615557f6810291bc7fff13b47607ae1f0c9529078f526640c3933eaa9ace"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-009-9116-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017020913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-009-9116-8", 
      "https://app.dimensions.ai/details/publication/pub.1017020913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11182-009-9116-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-009-9116-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-009-9116-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-009-9116-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-009-9116-8'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-009-9116-8 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N4dfcbce058984737b5323a2a339e99a8
4 schema:citation https://doi.org/10.1016/0925-4005(94)01555-v
5 https://doi.org/10.1016/j.progsurf.2005.09.002
6 https://doi.org/10.1016/j.snb.2003.08.022
7 https://doi.org/10.1016/j.snb.2006.12.030
8 https://doi.org/10.1016/s0925-4005(01)00754-7
9 schema:datePublished 2008-08
10 schema:datePublishedReg 2008-08-01
11 schema:description The results of theoretical and experimental studies into the effect of water vapor on the electrical conductance of a gas sensor and the sensor response to hydrogen action are discussed. A relation describing the dependence of electrical conductance G0 on absolute humidity in the pure air is derived using a hypothesis of the presence of space-charge regions depleted of electrons between the SnO2 grains in a polycrystalline tin dioxide film. Due to dissociative chemisorption of water molecules, the energy-band bending at the SnO2 grain interfaces decreases and the oxygen-vacancy concentration in the grains increases, resuling in an increase in G0. An equation for the sensor response to hydrogen action is derived (the G1/G0, ratio, where G1 is the sensor conductance in a gas mixture containing molecular hydrogen). The expression describes the dependence of G1/G0 on the hydrogen concentration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm n}_{{\rm H}_2 }$\end{document} in the interval 50–6·103 ppm, band bending at the SnO2 grain interface, and sensor temperature. The dependences of the sensor conductance, highest possible conductance, and energy-band bending on temperature and absolute humidity resulting from processing of the experimental data are in good agreement with the theoretical predictions.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1ca55d668b504fecb16f4a6d8bdfad7f
16 Nc95d47de6d4e480a9f512a08c3658f22
17 sg:journal.1313824
18 schema:name The effect of water vapor on the electrical properties and sensitivity of thin-film gas sensors based on tin dioxide
19 schema:pagination 831-839
20 schema:productId Nbc9e7e19e27c49b080951e508d7091ae
21 Nda24b706fce24ebf946d27ff84657ce2
22 Nf140e763959140de937698a63c74d2d5
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017020913
24 https://doi.org/10.1007/s11182-009-9116-8
25 schema:sdDatePublished 2019-04-10T23:26
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N891cf6298d114297a3dd907f2f205ee7
28 schema:url http://link.springer.com/10.1007%2Fs11182-009-9116-8
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N1ca55d668b504fecb16f4a6d8bdfad7f schema:volumeNumber 51
33 rdf:type schema:PublicationVolume
34 N2250191d360744bbbae0d3ecadcf3a00 rdf:first sg:person.013377016601.95
35 rdf:rest N4e2805363750429cbb9f919770b6ef33
36 N4dfcbce058984737b5323a2a339e99a8 rdf:first sg:person.016036107761.06
37 rdf:rest N2250191d360744bbbae0d3ecadcf3a00
38 N4e2805363750429cbb9f919770b6ef33 rdf:first sg:person.016364720601.18
39 rdf:rest Nf534ec241594422c86746546406dfba4
40 N891cf6298d114297a3dd907f2f205ee7 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N900c9636d7be4c55a7753c82c6f9d540 rdf:first sg:person.012052171001.90
43 rdf:rest rdf:nil
44 Nbc9e7e19e27c49b080951e508d7091ae schema:name dimensions_id
45 schema:value pub.1017020913
46 rdf:type schema:PropertyValue
47 Nc95d47de6d4e480a9f512a08c3658f22 schema:issueNumber 8
48 rdf:type schema:PublicationIssue
49 Nd39b5424e0eb4ed3aea41331d36d9a1a rdf:first sg:person.013247056206.67
50 rdf:rest N900c9636d7be4c55a7753c82c6f9d540
51 Nda24b706fce24ebf946d27ff84657ce2 schema:name readcube_id
52 schema:value 5118615557f6810291bc7fff13b47607ae1f0c9529078f526640c3933eaa9ace
53 rdf:type schema:PropertyValue
54 Nf140e763959140de937698a63c74d2d5 schema:name doi
55 schema:value 10.1007/s11182-009-9116-8
56 rdf:type schema:PropertyValue
57 Nf534ec241594422c86746546406dfba4 rdf:first sg:person.015673006217.42
58 rdf:rest Nd39b5424e0eb4ed3aea41331d36d9a1a
59 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
60 schema:name Chemical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
63 schema:name Theoretical and Computational Chemistry
64 rdf:type schema:DefinedTerm
65 sg:journal.1313824 schema:issn 1064-8887
66 1573-9228
67 schema:name Russian Physics Journal
68 rdf:type schema:Periodical
69 sg:person.012052171001.90 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
70 schema:familyName Chernikov
71 schema:givenName E. V.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012052171001.90
73 rdf:type schema:Person
74 sg:person.013247056206.67 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
75 schema:familyName Sevast’yanov
76 schema:givenName E. Yu.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247056206.67
78 rdf:type schema:Person
79 sg:person.013377016601.95 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
80 schema:familyName Anisimov
81 schema:givenName O. V.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377016601.95
83 rdf:type schema:Person
84 sg:person.015673006217.42 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
85 schema:familyName Sergeichenko
86 schema:givenName N. V.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673006217.42
88 rdf:type schema:Person
89 sg:person.016036107761.06 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
90 schema:familyName Gaman
91 schema:givenName V. I.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016036107761.06
93 rdf:type schema:Person
94 sg:person.016364720601.18 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
95 schema:familyName Maksimova
96 schema:givenName N. K.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016364720601.18
98 rdf:type schema:Person
99 https://doi.org/10.1016/0925-4005(94)01555-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1048285243
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.progsurf.2005.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016415490
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.snb.2003.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039012973
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.snb.2006.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015154112
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0925-4005(01)00754-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014842029
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
110 schema:name Tomsk State University, Tomsk, Russia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...