Reconstruction of Gas Concentration Profiles Along the Path by Searching the Initial Moments of the Distribution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-06

AUTHORS

O. K. Voitsekhovskaya, I. Yu. Leonov

ABSTRACT

The method of searching singular points in the spatial distribution of concentration of a gaseous component in a medium suggested by the authors and based on finding the initial moments of the distribution is applied to a thermodynamically inhomogeneous hot gaseous medium. The method of remote determination and interpretation of the characteristics of one-dimensional gas concentration distribution along the path is tested in a model experiment. Two variants of the standard concentration distribution along the path — normal and exponential distributions most typical under real conditions — are examined with simultaneous temperature variations specified by an exponential function of the coordinate. The influence of various factors of the model experiment is analyzed. More... »

PAGES

567-574

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-005-0171-5

DOI

http://dx.doi.org/10.1007/s11182-005-0171-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041222601


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voitsekhovskaya", 
        "givenName": "O. K.", 
        "id": "sg:person.013140045043.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leonov", 
        "givenName": "I. Yu.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "The method of searching singular points in the spatial distribution of concentration of a gaseous component in a medium suggested by the authors and based on finding the initial moments of the distribution is applied to a thermodynamically inhomogeneous hot gaseous medium. The method of remote determination and interpretation of the characteristics of one-dimensional gas concentration distribution along the path is tested in a model experiment. Two variants of the standard concentration distribution along the path \u2014 normal and exponential distributions most typical under real conditions \u2014 are examined with simultaneous temperature variations specified by an exponential function of the coordinate. The influence of various factors of the model experiment is analyzed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11182-005-0171-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "concentration distribution", 
      "hot gaseous medium", 
      "gas concentration distribution", 
      "gas concentration profiles", 
      "gaseous medium", 
      "model experiments", 
      "gaseous components", 
      "initial moment", 
      "remote determination", 
      "real conditions", 
      "temperature variation", 
      "concentration profiles", 
      "spatial distribution", 
      "distribution", 
      "exponential function", 
      "method", 
      "medium", 
      "moment", 
      "characteristics", 
      "path", 
      "experiments", 
      "conditions", 
      "influence", 
      "singular points", 
      "point", 
      "concentration", 
      "components", 
      "determination", 
      "exponential distribution", 
      "variation", 
      "coordinates", 
      "profile", 
      "reconstruction", 
      "authors", 
      "interpretation", 
      "function", 
      "factors", 
      "variants", 
      "inhomogeneous hot gaseous medium", 
      "one-dimensional gas concentration distribution", 
      "standard concentration distribution", 
      "simultaneous temperature variations"
    ], 
    "name": "Reconstruction of Gas Concentration Profiles Along the Path by Searching the Initial Moments of the Distribution", 
    "pagination": "567-574", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041222601"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-005-0171-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-005-0171-5", 
      "https://app.dimensions.ai/details/publication/pub.1041222601"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_407.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11182-005-0171-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-005-0171-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-005-0171-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-005-0171-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-005-0171-5'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      68 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-005-0171-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N353482ff62f34ecaadcf38203bb55211
4 schema:datePublished 2005-06
5 schema:datePublishedReg 2005-06-01
6 schema:description The method of searching singular points in the spatial distribution of concentration of a gaseous component in a medium suggested by the authors and based on finding the initial moments of the distribution is applied to a thermodynamically inhomogeneous hot gaseous medium. The method of remote determination and interpretation of the characteristics of one-dimensional gas concentration distribution along the path is tested in a model experiment. Two variants of the standard concentration distribution along the path — normal and exponential distributions most typical under real conditions — are examined with simultaneous temperature variations specified by an exponential function of the coordinate. The influence of various factors of the model experiment is analyzed.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N83c24ef16d274a9598ecc92021285da7
11 N93abc4fbe13e466b8ff2a474f5bad002
12 sg:journal.1313824
13 schema:keywords authors
14 characteristics
15 components
16 concentration
17 concentration distribution
18 concentration profiles
19 conditions
20 coordinates
21 determination
22 distribution
23 experiments
24 exponential distribution
25 exponential function
26 factors
27 function
28 gas concentration distribution
29 gas concentration profiles
30 gaseous components
31 gaseous medium
32 hot gaseous medium
33 influence
34 inhomogeneous hot gaseous medium
35 initial moment
36 interpretation
37 medium
38 method
39 model experiments
40 moment
41 one-dimensional gas concentration distribution
42 path
43 point
44 profile
45 real conditions
46 reconstruction
47 remote determination
48 simultaneous temperature variations
49 singular points
50 spatial distribution
51 standard concentration distribution
52 temperature variation
53 variants
54 variation
55 schema:name Reconstruction of Gas Concentration Profiles Along the Path by Searching the Initial Moments of the Distribution
56 schema:pagination 567-574
57 schema:productId N357edc01de024be5843f1f6aefbe07a4
58 N8be2a6f661d54d979fef71d24deab30a
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041222601
60 https://doi.org/10.1007/s11182-005-0171-5
61 schema:sdDatePublished 2021-11-01T18:08
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N002f1c6752ff40489d43e96eed3942d1
64 schema:url https://doi.org/10.1007/s11182-005-0171-5
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N002f1c6752ff40489d43e96eed3942d1 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N071675b6362644d8868a1300d1a50260 schema:affiliation grid-institutes:grid.77602.34
71 schema:familyName Leonov
72 schema:givenName I. Yu.
73 rdf:type schema:Person
74 N353482ff62f34ecaadcf38203bb55211 rdf:first sg:person.013140045043.23
75 rdf:rest N6c07e8fd666841c2b7cf0257931e5003
76 N357edc01de024be5843f1f6aefbe07a4 schema:name doi
77 schema:value 10.1007/s11182-005-0171-5
78 rdf:type schema:PropertyValue
79 N6c07e8fd666841c2b7cf0257931e5003 rdf:first N071675b6362644d8868a1300d1a50260
80 rdf:rest rdf:nil
81 N83c24ef16d274a9598ecc92021285da7 schema:volumeNumber 48
82 rdf:type schema:PublicationVolume
83 N8be2a6f661d54d979fef71d24deab30a schema:name dimensions_id
84 schema:value pub.1041222601
85 rdf:type schema:PropertyValue
86 N93abc4fbe13e466b8ff2a474f5bad002 schema:issueNumber 6
87 rdf:type schema:PublicationIssue
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:journal.1313824 schema:issn 1064-8887
95 1573-9228
96 schema:name Russian Physics Journal
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.013140045043.23 schema:affiliation grid-institutes:grid.77602.34
100 schema:familyName Voitsekhovskaya
101 schema:givenName O. K.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23
103 rdf:type schema:Person
104 grid-institutes:grid.77602.34 schema:alternateName Tomsk State University, Tomsk, Russia
105 schema:name Tomsk State University, Tomsk, Russia
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...