Thermal decomposition of 1,3,3-trinitroazetidine in the gas phase, solution, and melt View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10

AUTHORS

V. V. Nedel’ko, B. L. Korsunskii, N. N. Makhova, N. V. Chukanov, T. S. Larikova, I. V. Ovchinnikov, V. A. Tartakovsky

ABSTRACT

1,3,3-Trinitroazetidine (TNAZ) was synthesized using the alternative approach based on the transformation of 3-oximino-1-(p-toluenesulfonyl)azetidine in the reaction with nitric acid through intermediate pseudonitrol. The thermal decomposition of TNAZ in the gas phase, melt and m-dinitrobenzene solution in a wide concentration range (5–80%) was studied by manometry, volumetry, thermogravimetry, IR spectroscopy, and mass spectrometry. In the gas phase in the temperature range from 170 to 220°C the thermal decomposition proceeds according to the first-order kinetic law with the activation energy 40.5 kcal mol−1 and pre-exponential factor 1015.0 s−1. The major gaseous reaction products are N2, NO, NO2, CO2, H2O, and nitroacetaldehyde, and trace amounts of CO and HCN are formed. The rate-determining step of the process is the homolytic cleavage of the N-NO2 bond in the TNAZ molecule. In melt at 170–210 °C the thermal decomposition proceeds with the pronounced self-acceleration and the maximum reaction rates are observed at conversions 53.9–67.4%. The solid decomposition products accelerate the reaction. It is most likely that the autocatalysis of TNAZ decomposition in the liquid phase is due to the autocatalytic decomposition of 1-nitroso-3,3-dinitroazetidine, which is formed by the thermal decomposition of TNAZ. In m-dinitrobenzene TNAZ also decomposes with self-acceleration. The higher the concentration in the solution, the more pronounced the self-acceleration. Additives of picric acid moderately accelerate the thermal decomposition of TNAZ, whereas hexamethylenetetraamine additives exert a strong acceleration. More... »

PAGES

2028-2034

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11172-009-0277-y

DOI

http://dx.doi.org/10.1007/s11172-009-0277-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017949271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedel\u2019ko", 
        "givenName": "V. V.", 
        "id": "sg:person.015344224713.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344224713.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korsunskii", 
        "givenName": "B. L.", 
        "id": "sg:person.015517774253.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517774253.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.439283.7", 
          "name": [
            "N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhova", 
        "givenName": "N. N.", 
        "id": "sg:person.016546763131.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546763131.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chukanov", 
        "givenName": "N. V.", 
        "id": "sg:person.0677073451.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677073451.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larikova", 
        "givenName": "T. S.", 
        "id": "sg:person.010350343113.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350343113.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.439283.7", 
          "name": [
            "N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ovchinnikov", 
        "givenName": "I. V.", 
        "id": "sg:person.013666411347.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666411347.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.439283.7", 
          "name": [
            "N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tartakovsky", 
        "givenName": "V. A.", 
        "id": "sg:person.010370656303.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370656303.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-10", 
    "datePublishedReg": "2009-10-01", 
    "description": "Abstract1,3,3-Trinitroazetidine (TNAZ) was synthesized using the alternative approach based on the transformation of 3-oximino-1-(p-toluenesulfonyl)azetidine in the reaction with nitric acid through intermediate pseudonitrol. The thermal decomposition of TNAZ in the gas phase, melt and m-dinitrobenzene solution in a wide concentration range (5\u201380%) was studied by manometry, volumetry, thermogravimetry, IR spectroscopy, and mass spectrometry. In the gas phase in the temperature range from 170 to 220\u00b0C the thermal decomposition proceeds according to the first-order kinetic law with the activation energy 40.5 kcal mol\u22121 and pre-exponential factor 1015.0 s\u22121. The major gaseous reaction products are N2, NO, NO2, CO2, H2O, and nitroacetaldehyde, and trace amounts of CO and HCN are formed. The rate-determining step of the process is the homolytic cleavage of the N-NO2 bond in the TNAZ molecule. In melt at 170\u2013210 \u00b0C the thermal decomposition proceeds with the pronounced self-acceleration and the maximum reaction rates are observed at conversions 53.9\u201367.4%. The solid decomposition products accelerate the reaction. It is most likely that the autocatalysis of TNAZ decomposition in the liquid phase is due to the autocatalytic decomposition of 1-nitroso-3,3-dinitroazetidine, which is formed by the thermal decomposition of TNAZ. In m-dinitrobenzene TNAZ also decomposes with self-acceleration. The higher the concentration in the solution, the more pronounced the self-acceleration. Additives of picric acid moderately accelerate the thermal decomposition of TNAZ, whereas hexamethylenetetraamine additives exert a strong acceleration.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11172-009-0277-y", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022309", 
        "issn": [
          "1066-5285", 
          "1573-9171"
        ], 
        "name": "Russian Chemical Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "gas phase", 
      "thermal decomposition", 
      "N-NO2 bond", 
      "rate-determining step", 
      "gaseous reaction products", 
      "wide concentration range", 
      "solid decomposition products", 
      "first-order kinetic law", 
      "IR spectroscopy", 
      "homolytic cleavage", 
      "picric acid", 
      "mass spectrometry", 
      "decomposition products", 
      "maximum reaction rate", 
      "nitric acid", 
      "trace amounts", 
      "autocatalytic decomposition", 
      "reaction products", 
      "reaction rate", 
      "concentration range", 
      "decomposition proceeds", 
      "trinitroazetidine", 
      "liquid phase", 
      "kinetic law", 
      "reaction", 
      "additives", 
      "decomposition", 
      "temperature range", 
      "acid", 
      "dinitroazetidine", 
      "spectroscopy", 
      "solution", 
      "thermogravimetry", 
      "bonds", 
      "spectrometry", 
      "products", 
      "molecules", 
      "H2O", 
      "phase", 
      "CO", 
      "HCN", 
      "autocatalysis", 
      "N2", 
      "NO2", 
      "cleavage", 
      "CO2", 
      "melt", 
      "proceeds", 
      "range", 
      "strong acceleration", 
      "concentration", 
      "step", 
      "amount", 
      "alternative approach", 
      "transformation", 
      "process", 
      "rate", 
      "approach", 
      "acceleration", 
      "law", 
      "volumetry", 
      "manometry"
    ], 
    "name": "Thermal decomposition of 1,3,3-trinitroazetidine in the gas phase, solution, and melt", 
    "pagination": "2028-2034", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017949271"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11172-009-0277-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11172-009-0277-y", 
      "https://app.dimensions.ai/details/publication/pub.1017949271"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11172-009-0277-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11172-009-0277-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11172-009-0277-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11172-009-0277-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11172-009-0277-y'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      20 PREDICATES      87 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11172-009-0277-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ndbabde5f3a714801856979e723a421c8
4 schema:datePublished 2009-10
5 schema:datePublishedReg 2009-10-01
6 schema:description Abstract1,3,3-Trinitroazetidine (TNAZ) was synthesized using the alternative approach based on the transformation of 3-oximino-1-(p-toluenesulfonyl)azetidine in the reaction with nitric acid through intermediate pseudonitrol. The thermal decomposition of TNAZ in the gas phase, melt and m-dinitrobenzene solution in a wide concentration range (5–80%) was studied by manometry, volumetry, thermogravimetry, IR spectroscopy, and mass spectrometry. In the gas phase in the temperature range from 170 to 220°C the thermal decomposition proceeds according to the first-order kinetic law with the activation energy 40.5 kcal mol−1 and pre-exponential factor 1015.0 s−1. The major gaseous reaction products are N2, NO, NO2, CO2, H2O, and nitroacetaldehyde, and trace amounts of CO and HCN are formed. The rate-determining step of the process is the homolytic cleavage of the N-NO2 bond in the TNAZ molecule. In melt at 170–210 °C the thermal decomposition proceeds with the pronounced self-acceleration and the maximum reaction rates are observed at conversions 53.9–67.4%. The solid decomposition products accelerate the reaction. It is most likely that the autocatalysis of TNAZ decomposition in the liquid phase is due to the autocatalytic decomposition of 1-nitroso-3,3-dinitroazetidine, which is formed by the thermal decomposition of TNAZ. In m-dinitrobenzene TNAZ also decomposes with self-acceleration. The higher the concentration in the solution, the more pronounced the self-acceleration. Additives of picric acid moderately accelerate the thermal decomposition of TNAZ, whereas hexamethylenetetraamine additives exert a strong acceleration.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N7273e7245c8c4b23b2a3b5d1c5cf5625
10 Nb60f88f5e2014aa1b285c0abb531fa1b
11 sg:journal.1022309
12 schema:keywords CO
13 CO2
14 H2O
15 HCN
16 IR spectroscopy
17 N-NO2 bond
18 N2
19 NO2
20 acceleration
21 acid
22 additives
23 alternative approach
24 amount
25 approach
26 autocatalysis
27 autocatalytic decomposition
28 bonds
29 cleavage
30 concentration
31 concentration range
32 decomposition
33 decomposition proceeds
34 decomposition products
35 dinitroazetidine
36 first-order kinetic law
37 gas phase
38 gaseous reaction products
39 homolytic cleavage
40 kinetic law
41 law
42 liquid phase
43 manometry
44 mass spectrometry
45 maximum reaction rate
46 melt
47 molecules
48 nitric acid
49 phase
50 picric acid
51 proceeds
52 process
53 products
54 range
55 rate
56 rate-determining step
57 reaction
58 reaction products
59 reaction rate
60 solid decomposition products
61 solution
62 spectrometry
63 spectroscopy
64 step
65 strong acceleration
66 temperature range
67 thermal decomposition
68 thermogravimetry
69 trace amounts
70 transformation
71 trinitroazetidine
72 volumetry
73 wide concentration range
74 schema:name Thermal decomposition of 1,3,3-trinitroazetidine in the gas phase, solution, and melt
75 schema:pagination 2028-2034
76 schema:productId N0f50a2569580455d9dc6bfd1124549e5
77 Ne0a9c6da56d240909cc87cb596c20605
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017949271
79 https://doi.org/10.1007/s11172-009-0277-y
80 schema:sdDatePublished 2022-12-01T06:27
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N2d034128fe194d5a89c9248be43c0b31
83 schema:url https://doi.org/10.1007/s11172-009-0277-y
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0f50a2569580455d9dc6bfd1124549e5 schema:name doi
88 schema:value 10.1007/s11172-009-0277-y
89 rdf:type schema:PropertyValue
90 N10b7f2a7068e46da9ddf713c64824765 rdf:first sg:person.016546763131.27
91 rdf:rest N6a9eaaa86bde4cdd9bae0d3d77764d42
92 N2d034128fe194d5a89c9248be43c0b31 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N6a9eaaa86bde4cdd9bae0d3d77764d42 rdf:first sg:person.0677073451.16
95 rdf:rest N7d8d2f4f6c4a4c9ca0c6aa356c96b0fa
96 N7273e7245c8c4b23b2a3b5d1c5cf5625 schema:volumeNumber 58
97 rdf:type schema:PublicationVolume
98 N7d8d2f4f6c4a4c9ca0c6aa356c96b0fa rdf:first sg:person.010350343113.60
99 rdf:rest Nc648d037c8ea4b94af55d53f640daa75
100 Nb60f88f5e2014aa1b285c0abb531fa1b schema:issueNumber 10
101 rdf:type schema:PublicationIssue
102 Nc648d037c8ea4b94af55d53f640daa75 rdf:first sg:person.013666411347.92
103 rdf:rest Ne639a7fcc88a4d86bd5649ddef076077
104 Ndbabde5f3a714801856979e723a421c8 rdf:first sg:person.015344224713.16
105 rdf:rest Nfb035f856f3e48cdaa54edc1f1878476
106 Ne0a9c6da56d240909cc87cb596c20605 schema:name dimensions_id
107 schema:value pub.1017949271
108 rdf:type schema:PropertyValue
109 Ne639a7fcc88a4d86bd5649ddef076077 rdf:first sg:person.010370656303.84
110 rdf:rest rdf:nil
111 Nfb035f856f3e48cdaa54edc1f1878476 rdf:first sg:person.015517774253.60
112 rdf:rest N10b7f2a7068e46da9ddf713c64824765
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Chemistry (incl. Structural)
118 rdf:type schema:DefinedTerm
119 sg:journal.1022309 schema:issn 1066-5285
120 1573-9171
121 schema:name Russian Chemical Bulletin
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.010350343113.60 schema:affiliation grid-institutes:grid.418949.9
125 schema:familyName Larikova
126 schema:givenName T. S.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350343113.60
128 rdf:type schema:Person
129 sg:person.010370656303.84 schema:affiliation grid-institutes:grid.439283.7
130 schema:familyName Tartakovsky
131 schema:givenName V. A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370656303.84
133 rdf:type schema:Person
134 sg:person.013666411347.92 schema:affiliation grid-institutes:grid.439283.7
135 schema:familyName Ovchinnikov
136 schema:givenName I. V.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666411347.92
138 rdf:type schema:Person
139 sg:person.015344224713.16 schema:affiliation grid-institutes:grid.418949.9
140 schema:familyName Nedel’ko
141 schema:givenName V. V.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344224713.16
143 rdf:type schema:Person
144 sg:person.015517774253.60 schema:affiliation grid-institutes:grid.418949.9
145 schema:familyName Korsunskii
146 schema:givenName B. L.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517774253.60
148 rdf:type schema:Person
149 sg:person.016546763131.27 schema:affiliation grid-institutes:grid.439283.7
150 schema:familyName Makhova
151 schema:givenName N. N.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546763131.27
153 rdf:type schema:Person
154 sg:person.0677073451.16 schema:affiliation grid-institutes:grid.418949.9
155 schema:familyName Chukanov
156 schema:givenName N. V.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677073451.16
158 rdf:type schema:Person
159 grid-institutes:grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation
160 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian Federation
161 rdf:type schema:Organization
162 grid-institutes:grid.439283.7 schema:alternateName N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
163 schema:name N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...