3D ternary LaCdSe-GO-TiO2 nanocomposite synthesized with high powersonic method and sonophotocatalytic efficiency for hydrogen evolution with different scavengers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-06-06

AUTHORS

Md Nazmodduha Rafat, Chang Sung Lim, Kwang Youn Cho, Chong Hun Jung, Won-Chun Oh

ABSTRACT

In this research, a novel LaCdSe-GO-TiO2 (LCS-G-T) has been synthesized by utilizing a high powersonic method under controlled condition. From the structural morphology, it is apparent that the composite is a good example of size control and low-cost synthesis with an ultrasound and scavenger effect. The synthesized LaCdSe-GO-TiO2 (LCS-G-T) composite has given a good efficiency for photocatalytic water splitting for hydrogen evolution. The implementation of high ultrasonic power has increased, the surface area decreased the particle size, due to the collapse by micro-bubbles occurred and formation of crystal enhancement. Different characterizations have been carried out for “as-prepared” composites, such as X-ray diffraction (XRD) for checking the crystallinity, scanning electron microscopy (SEM) for structural morphology, energy-dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectra (DRS), and photoluminescence (PL) spectra, and a standard three-electrode system has been used in a cyclic voltammetry test. The LaCdSe-GO-TiO2 has exposed a good photocatalytic activity in the presence and absence of several scavengers. Moreover, the applied high powersonic for hydrogen production can significantly influence the photocatalytic activity of LaCdSe-G-T. The implemented high powersonic produces electric field bridge and helps the conversion of electron from photon. More... »

PAGES

3411-3436

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11164-021-04479-7

DOI

http://dx.doi.org/10.1007/s11164-021-04479-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138636631


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea", 
          "id": "http://www.grid.ac/institutes/grid.411977.d", 
          "name": [
            "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rafat", 
        "givenName": "Md Nazmodduha", 
        "id": "sg:person.015553400055.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553400055.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea", 
          "id": "http://www.grid.ac/institutes/grid.411977.d", 
          "name": [
            "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Chang Sung", 
        "id": "sg:person.011270466123.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongnam, South Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongnam, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Kwang Youn", 
        "id": "sg:person.01100526652.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100526652.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, 305-600, Yuseong, Daejeon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.418964.6", 
          "name": [
            "Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, 305-600, Yuseong, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Chong Hun", 
        "id": "sg:person.010546273470.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546273470.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440648.a", 
          "name": [
            "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea", 
            "Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Won-Chun", 
        "id": "sg:person.015032760145.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-030-25862-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120696753", 
          "https://doi.org/10.1007/978-3-030-25862-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11164-020-04329-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134348879", 
          "https://doi.org/10.1007/s11164-020-04329-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11164-019-04011-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121944389", 
          "https://doi.org/10.1007/s11164-019-04011-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-06", 
    "datePublishedReg": "2021-06-06", 
    "description": "In this research, a novel LaCdSe-GO-TiO2 (LCS-G-T) has been synthesized by utilizing a high powersonic method under controlled condition. From the structural morphology, it is apparent that the composite is a good example of size control and low-cost synthesis with an ultrasound and scavenger effect. The synthesized LaCdSe-GO-TiO2 (LCS-G-T) composite has given a good efficiency for photocatalytic water splitting for hydrogen evolution. The implementation of high ultrasonic power has increased, the surface area decreased the particle size, due to the collapse by micro-bubbles occurred and formation of crystal enhancement. Different characterizations have been carried out for \u201cas-prepared\u201d composites, such as X-ray diffraction (XRD) for checking the crystallinity, scanning electron microscopy (SEM) for structural morphology, energy-dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV\u2013Vis diffuse reflectance spectra (DRS), and photoluminescence (PL) spectra, and a standard three-electrode system has been used in a cyclic voltammetry test. The LaCdSe-GO-TiO2 has exposed a good photocatalytic activity in the presence and absence of several scavengers. Moreover, the applied high powersonic for hydrogen production can significantly influence the photocatalytic activity of LaCdSe-G-T. The implemented high powersonic produces electric field bridge and helps the conversion of electron from photon.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11164-021-04479-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1127880", 
        "issn": [
          "0922-6168", 
          "1568-5675"
        ], 
        "name": "Research on Chemical Intermediates", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "transmission electron microscopy", 
      "diffuse reflectance spectra", 
      "photocatalytic activity", 
      "hydrogen evolution", 
      "UV\u2013Vis diffuse reflectance spectra", 
      "electron microscopy", 
      "structural morphology", 
      "photocatalytic water splitting", 
      "low-cost synthesis", 
      "best photocatalytic activity", 
      "three-electrode system", 
      "ray photoelectron spectroscopy", 
      "cyclic voltammetry tests", 
      "water splitting", 
      "TiO2 nanocomposites", 
      "high ultrasonic power", 
      "voltammetry tests", 
      "hydrogen production", 
      "different scavengers", 
      "conversion of electrons", 
      "photoluminescence spectra", 
      "photoelectron spectroscopy", 
      "size control", 
      "TiO2 composite", 
      "surface area", 
      "ray diffraction", 
      "field bridge", 
      "ultrasonic power", 
      "particle size", 
      "reflectance spectra", 
      "composites", 
      "TiO2", 
      "microscopy", 
      "better efficiency", 
      "ray analysis", 
      "different characterizations", 
      "nanocomposites", 
      "morphology", 
      "efficiency", 
      "diffraction", 
      "crystallinity", 
      "spectroscopy", 
      "spectra", 
      "splitting", 
      "synthesis", 
      "characterization", 
      "photons", 
      "method", 
      "enhancement", 
      "electrons", 
      "size", 
      "bridge", 
      "power", 
      "conversion", 
      "implementation", 
      "conditions", 
      "system", 
      "evolution", 
      "collapse", 
      "production", 
      "scavenger effect", 
      "test", 
      "activity", 
      "scavengers", 
      "formation", 
      "example", 
      "good example", 
      "control", 
      "area", 
      "effect", 
      "analysis", 
      "presence", 
      "ultrasound", 
      "research", 
      "absence", 
      "novel LaCdSe-GO", 
      "LaCdSe-GO", 
      "high powersonic method", 
      "powersonic method", 
      "synthesized LaCdSe-GO", 
      "crystal enhancement", 
      "high powersonic", 
      "powersonic", 
      "LaCdSe", 
      "electric field bridge", 
      "ternary LaCdSe-GO", 
      "sonophotocatalytic efficiency"
    ], 
    "name": "3D ternary LaCdSe-GO-TiO2 nanocomposite synthesized with high powersonic method and sonophotocatalytic efficiency for hydrogen evolution with different scavengers", 
    "pagination": "3411-3436", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138636631"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11164-021-04479-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11164-021-04479-7", 
      "https://app.dimensions.ai/details/publication/pub.1138636631"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_894.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11164-021-04479-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11164-021-04479-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11164-021-04479-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11164-021-04479-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11164-021-04479-7'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      22 PREDICATES      115 URIs      104 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11164-021-04479-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nadb7abf1819a4bcc907c70558df86612
4 schema:citation sg:pub.10.1007/978-3-030-25862-7
5 sg:pub.10.1007/s11164-019-04011-y
6 sg:pub.10.1007/s11164-020-04329-y
7 schema:datePublished 2021-06-06
8 schema:datePublishedReg 2021-06-06
9 schema:description In this research, a novel LaCdSe-GO-TiO2 (LCS-G-T) has been synthesized by utilizing a high powersonic method under controlled condition. From the structural morphology, it is apparent that the composite is a good example of size control and low-cost synthesis with an ultrasound and scavenger effect. The synthesized LaCdSe-GO-TiO2 (LCS-G-T) composite has given a good efficiency for photocatalytic water splitting for hydrogen evolution. The implementation of high ultrasonic power has increased, the surface area decreased the particle size, due to the collapse by micro-bubbles occurred and formation of crystal enhancement. Different characterizations have been carried out for “as-prepared” composites, such as X-ray diffraction (XRD) for checking the crystallinity, scanning electron microscopy (SEM) for structural morphology, energy-dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectra (DRS), and photoluminescence (PL) spectra, and a standard three-electrode system has been used in a cyclic voltammetry test. The LaCdSe-GO-TiO2 has exposed a good photocatalytic activity in the presence and absence of several scavengers. Moreover, the applied high powersonic for hydrogen production can significantly influence the photocatalytic activity of LaCdSe-G-T. The implemented high powersonic produces electric field bridge and helps the conversion of electron from photon.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N96fa9bfa7f1e49d0a0da5237f32312cc
14 Ne75d4b25f35547ea8b6708a3667efa08
15 sg:journal.1127880
16 schema:keywords LaCdSe
17 LaCdSe-GO
18 TiO2
19 TiO2 composite
20 TiO2 nanocomposites
21 UV–Vis diffuse reflectance spectra
22 absence
23 activity
24 analysis
25 area
26 best photocatalytic activity
27 better efficiency
28 bridge
29 characterization
30 collapse
31 composites
32 conditions
33 control
34 conversion
35 conversion of electrons
36 crystal enhancement
37 crystallinity
38 cyclic voltammetry tests
39 different characterizations
40 different scavengers
41 diffraction
42 diffuse reflectance spectra
43 effect
44 efficiency
45 electric field bridge
46 electron microscopy
47 electrons
48 enhancement
49 evolution
50 example
51 field bridge
52 formation
53 good example
54 high powersonic
55 high powersonic method
56 high ultrasonic power
57 hydrogen evolution
58 hydrogen production
59 implementation
60 low-cost synthesis
61 method
62 microscopy
63 morphology
64 nanocomposites
65 novel LaCdSe-GO
66 particle size
67 photocatalytic activity
68 photocatalytic water splitting
69 photoelectron spectroscopy
70 photoluminescence spectra
71 photons
72 power
73 powersonic
74 powersonic method
75 presence
76 production
77 ray analysis
78 ray diffraction
79 ray photoelectron spectroscopy
80 reflectance spectra
81 research
82 scavenger effect
83 scavengers
84 size
85 size control
86 sonophotocatalytic efficiency
87 spectra
88 spectroscopy
89 splitting
90 structural morphology
91 surface area
92 synthesis
93 synthesized LaCdSe-GO
94 system
95 ternary LaCdSe-GO
96 test
97 three-electrode system
98 transmission electron microscopy
99 ultrasonic power
100 ultrasound
101 voltammetry tests
102 water splitting
103 schema:name 3D ternary LaCdSe-GO-TiO2 nanocomposite synthesized with high powersonic method and sonophotocatalytic efficiency for hydrogen evolution with different scavengers
104 schema:pagination 3411-3436
105 schema:productId N49b639d8347546f3b3f861aed810f81c
106 N7f4712d83d994f1dbeaa0f8c93d2ea35
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138636631
108 https://doi.org/10.1007/s11164-021-04479-7
109 schema:sdDatePublished 2022-01-01T18:58
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher Nb3e8af52610a403fb06947014d1ec4e5
112 schema:url https://doi.org/10.1007/s11164-021-04479-7
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N1b4f6caed5b54476b2bd348c5e4355ea rdf:first sg:person.011270466123.07
117 rdf:rest N3756804e05f247df98d7d51efe4d5bff
118 N3756804e05f247df98d7d51efe4d5bff rdf:first sg:person.01100526652.79
119 rdf:rest N7f6209bb02cc4a50ab8a1db8b839b4e0
120 N49b639d8347546f3b3f861aed810f81c schema:name dimensions_id
121 schema:value pub.1138636631
122 rdf:type schema:PropertyValue
123 N5f6108b3aa2e4bc9b7af4358ec832820 rdf:first sg:person.015032760145.10
124 rdf:rest rdf:nil
125 N7f4712d83d994f1dbeaa0f8c93d2ea35 schema:name doi
126 schema:value 10.1007/s11164-021-04479-7
127 rdf:type schema:PropertyValue
128 N7f6209bb02cc4a50ab8a1db8b839b4e0 rdf:first sg:person.010546273470.69
129 rdf:rest N5f6108b3aa2e4bc9b7af4358ec832820
130 N96fa9bfa7f1e49d0a0da5237f32312cc schema:issueNumber 8
131 rdf:type schema:PublicationIssue
132 Nadb7abf1819a4bcc907c70558df86612 rdf:first sg:person.015553400055.42
133 rdf:rest N1b4f6caed5b54476b2bd348c5e4355ea
134 Nb3e8af52610a403fb06947014d1ec4e5 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Ne75d4b25f35547ea8b6708a3667efa08 schema:volumeNumber 47
137 rdf:type schema:PublicationVolume
138 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
139 schema:name Chemical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
142 schema:name Physical Chemistry (incl. Structural)
143 rdf:type schema:DefinedTerm
144 sg:journal.1127880 schema:issn 0922-6168
145 1568-5675
146 schema:name Research on Chemical Intermediates
147 schema:publisher Springer Nature
148 rdf:type schema:Periodical
149 sg:person.010546273470.69 schema:affiliation grid-institutes:grid.418964.6
150 schema:familyName Jung
151 schema:givenName Chong Hun
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546273470.69
153 rdf:type schema:Person
154 sg:person.01100526652.79 schema:affiliation grid-institutes:None
155 schema:familyName Cho
156 schema:givenName Kwang Youn
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100526652.79
158 rdf:type schema:Person
159 sg:person.011270466123.07 schema:affiliation grid-institutes:grid.411977.d
160 schema:familyName Lim
161 schema:givenName Chang Sung
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07
163 rdf:type schema:Person
164 sg:person.015032760145.10 schema:affiliation grid-institutes:grid.440648.a
165 schema:familyName Oh
166 schema:givenName Won-Chun
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10
168 rdf:type schema:Person
169 sg:person.015553400055.42 schema:affiliation grid-institutes:grid.411977.d
170 schema:familyName Rafat
171 schema:givenName Md Nazmodduha
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553400055.42
173 rdf:type schema:Person
174 sg:pub.10.1007/978-3-030-25862-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120696753
175 https://doi.org/10.1007/978-3-030-25862-7
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11164-019-04011-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1121944389
178 https://doi.org/10.1007/s11164-019-04011-y
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11164-020-04329-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1134348879
181 https://doi.org/10.1007/s11164-020-04329-y
182 rdf:type schema:CreativeWork
183 grid-institutes:None schema:alternateName Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongnam, South Korea
184 schema:name Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongnam, South Korea
185 rdf:type schema:Organization
186 grid-institutes:grid.411977.d schema:alternateName Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea
187 schema:name Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea
188 rdf:type schema:Organization
189 grid-institutes:grid.418964.6 schema:alternateName Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, 305-600, Yuseong, Daejeon, Korea
190 schema:name Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, 305-600, Yuseong, Daejeon, Korea
191 rdf:type schema:Organization
192 grid-institutes:grid.440648.a schema:alternateName Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People’s Republic of China
193 schema:name Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People’s Republic of China
194 Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...