Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-09-20

AUTHORS

Ihsan Shehadi, Fatima Abla, Bryan Wakefield, Joseph Reibenspies, Mahreen Arooj, Ahmed A. Mohamed

ABSTRACT

Chemical transformations such as nitrile hydration or carbon–oxygen bond formation reactions under gentle conditions are important in the pharmaceutical industry because of the presence of potentially delicate functional groups. We present a non-catalytic hydration reaction of acetonitrile to the corresponding protonated acetamide gold(III) salt [CH3(OH)NH2]AuCl4 under ambient conditions in water using chloroauric acid H[AuCl4] for the first time. ATR-FTIR, Raman and 1H and 13C NMR spectroscopic data in addition to X-ray crystallography supported the isolation of protonated acetamide stabilized with [AuCl4]− anion. The protonation of N–C=O fragment of acetamide, O- versus N-protonation aptitude, was validated experimentally and theoretically. The X-ray crystal structure of the acetamide salt [CH3C(OH)NH2]AuCl4 in the triclinic Pī space group suggested the enolic form. However, the reaction of gold(III) trichloride AuCl3 with acetonitrile in water in the absence of a proton source formed the gold(I)/gold(III) salt [Au(CH3CN)2]AuCl4 without hydration as shown in X-ray structure in the monoclinic P21/c space group. Mapping of HOMO–LUMO energy gap using frontier molecular orbital theory and MESP surfaces of OH and NH conformers of acetamide from DFT calculations clearly shows subsequent changes in their profiles with the change in their protonation states. An energy gap of 56.4 kcal/mol in the optimized energies of OH and NH conformers of acetamide along with computed HOMO–LUMO energy difference represents the relative stability of OH conformer compared to NH conformer, thus leading to the conclusion that OH protonation site is more likely to exist in the acetamide structure as compared to the NH protonation state. More... »

PAGES

593-607

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11164-019-03979-x

DOI

http://dx.doi.org/10.1007/s11164-019-03979-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121122736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE", 
          "id": "http://www.grid.ac/institutes/grid.412789.1", 
          "name": [
            "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shehadi", 
        "givenName": "Ihsan", 
        "id": "sg:person.014542647267.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542647267.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE", 
          "id": "http://www.grid.ac/institutes/grid.412789.1", 
          "name": [
            "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abla", 
        "givenName": "Fatima", 
        "id": "sg:person.010657236535.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657236535.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Coastal Carolina University, 29428-6054, Conway, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.254313.2", 
          "name": [
            "Department of Chemistry, Coastal Carolina University, 29428-6054, Conway, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wakefield", 
        "givenName": "Bryan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Texas A&M University, 77843, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Chemistry, Texas A&M University, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reibenspies", 
        "givenName": "Joseph", 
        "id": "sg:person.01150467247.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150467247.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE", 
          "id": "http://www.grid.ac/institutes/grid.412789.1", 
          "name": [
            "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arooj", 
        "givenName": "Mahreen", 
        "id": "sg:person.01342234217.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342234217.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE", 
          "id": "http://www.grid.ac/institutes/grid.412789.1", 
          "name": [
            "Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohamed", 
        "givenName": "Ahmed A.", 
        "id": "sg:person.01137465627.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137465627.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11164-014-1589-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044698157", 
          "https://doi.org/10.1007/s11164-014-1589-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10870-012-0333-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011904965", 
          "https://doi.org/10.1007/s10870-012-0333-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015224104880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010286781", 
          "https://doi.org/10.1023/a:1015224104880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13404-011-0013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044546072", 
          "https://doi.org/10.1007/s13404-011-0013-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-09-20", 
    "datePublishedReg": "2019-09-20", 
    "description": "Chemical transformations such as nitrile hydration or carbon\u2013oxygen bond formation reactions under gentle conditions are important in the pharmaceutical industry because of the presence of potentially delicate functional groups. We present a non-catalytic hydration reaction of acetonitrile to the corresponding protonated acetamide gold(III) salt [CH3(OH)NH2]AuCl4 under ambient conditions in water using chloroauric acid H[AuCl4] for the first time. ATR-FTIR, Raman and 1H and 13C NMR spectroscopic data in addition to X-ray crystallography supported the isolation of protonated acetamide stabilized with [AuCl4]\u2212 anion. The protonation of N\u2013C=O fragment of acetamide, O- versus N-protonation aptitude, was validated experimentally and theoretically. The X-ray crystal structure of the acetamide salt [CH3C(OH)NH2]AuCl4 in the triclinic P\u012b space group suggested the enolic form. However, the reaction of gold(III) trichloride AuCl3 with acetonitrile in water in the absence of a proton source formed the gold(I)/gold(III) salt [Au(CH3CN)2]AuCl4 without hydration as shown in X-ray structure in the monoclinic P21/c space group. Mapping of HOMO\u2013LUMO energy gap using frontier molecular orbital theory and MESP surfaces of OH and NH conformers of acetamide from DFT calculations clearly shows subsequent changes in their profiles with the change in their protonation states. An energy gap of 56.4\u00a0kcal/mol in the optimized energies of OH and NH conformers of acetamide along with computed HOMO\u2013LUMO energy difference represents the relative stability of OH conformer compared to NH conformer, thus leading to the conclusion that OH protonation site is more likely to exist in the acetamide structure as compared to the NH protonation state.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11164-019-03979-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1127880", 
        "issn": [
          "0922-6168", 
          "1568-5675"
        ], 
        "name": "Research on Chemical Intermediates", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "chloroauric acid", 
      "protonation state", 
      "monoclinic P21/c space group", 
      "P21/c space group", 
      "triclinic P\u012b space group", 
      "HOMO-LUMO energy gap", 
      "frontier molecular orbital theory", 
      "energy of OH", 
      "HOMO\u2013LUMO energy difference", 
      "bond formation reactions", 
      "P\u012b space group", 
      "space group", 
      "ray crystal structure", 
      "NMR spectroscopic data", 
      "molecular orbital theory", 
      "energy gap", 
      "MESP surfaces", 
      "nitrile hydration", 
      "DFT calculations", 
      "acetamide structure", 
      "chemical transformations", 
      "enolic form", 
      "protonation sites", 
      "ray crystallography", 
      "ATR-FTIR", 
      "formation reaction", 
      "proton source", 
      "orbital theory", 
      "ray structure", 
      "functional groups", 
      "crystal structure", 
      "spectroscopic data", 
      "gentle conditions", 
      "conformers", 
      "ambient conditions", 
      "kcal/", 
      "relative stability", 
      "acetamide", 
      "energy difference", 
      "salt", 
      "pharmaceutical industry", 
      "reaction", 
      "OH", 
      "hydration reaction", 
      "hydration", 
      "anions", 
      "protonation", 
      "AuCl3", 
      "acid", 
      "acetonitrile", 
      "crystallography", 
      "structure", 
      "water", 
      "Raman", 
      "first time", 
      "calculations", 
      "oxygen", 
      "stability", 
      "surface", 
      "energy", 
      "presence", 
      "conditions", 
      "state", 
      "fragments", 
      "group", 
      "sites", 
      "gap", 
      "transformation", 
      "isolation", 
      "addition", 
      "insights", 
      "form", 
      "source", 
      "industry", 
      "changes", 
      "profile", 
      "absence", 
      "time", 
      "theory", 
      "subsequent changes", 
      "aptitude", 
      "data", 
      "mapping", 
      "differences", 
      "conclusion", 
      "carbon\u2013oxygen bond formation reactions", 
      "delicate functional groups", 
      "non-catalytic hydration reaction", 
      "fragment of acetamide", 
      "protonation aptitude", 
      "acetamide salt", 
      "c space group", 
      "NH conformers", 
      "OH conformer", 
      "OH protonation site", 
      "NH protonation state", 
      "Facile protic hydration", 
      "protic hydration"
    ], 
    "name": "Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations", 
    "pagination": "593-607", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121122736"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11164-019-03979-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11164-019-03979-x", 
      "https://app.dimensions.ai/details/publication/pub.1121122736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_818.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11164-019-03979-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11164-019-03979-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11164-019-03979-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11164-019-03979-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11164-019-03979-x'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      22 PREDICATES      127 URIs      115 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11164-019-03979-x schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd837ad0ee26145cb91593b02bb86d8b7
4 schema:citation sg:pub.10.1007/s10870-012-0333-6
5 sg:pub.10.1007/s11164-014-1589-6
6 sg:pub.10.1007/s13404-011-0013-x
7 sg:pub.10.1023/a:1015224104880
8 schema:datePublished 2019-09-20
9 schema:datePublishedReg 2019-09-20
10 schema:description Chemical transformations such as nitrile hydration or carbon–oxygen bond formation reactions under gentle conditions are important in the pharmaceutical industry because of the presence of potentially delicate functional groups. We present a non-catalytic hydration reaction of acetonitrile to the corresponding protonated acetamide gold(III) salt [CH3(OH)NH2]AuCl4 under ambient conditions in water using chloroauric acid H[AuCl4] for the first time. ATR-FTIR, Raman and 1H and 13C NMR spectroscopic data in addition to X-ray crystallography supported the isolation of protonated acetamide stabilized with [AuCl4]− anion. The protonation of N–C=O fragment of acetamide, O- versus N-protonation aptitude, was validated experimentally and theoretically. The X-ray crystal structure of the acetamide salt [CH3C(OH)NH2]AuCl4 in the triclinic Pī space group suggested the enolic form. However, the reaction of gold(III) trichloride AuCl3 with acetonitrile in water in the absence of a proton source formed the gold(I)/gold(III) salt [Au(CH3CN)2]AuCl4 without hydration as shown in X-ray structure in the monoclinic P21/c space group. Mapping of HOMO–LUMO energy gap using frontier molecular orbital theory and MESP surfaces of OH and NH conformers of acetamide from DFT calculations clearly shows subsequent changes in their profiles with the change in their protonation states. An energy gap of 56.4 kcal/mol in the optimized energies of OH and NH conformers of acetamide along with computed HOMO–LUMO energy difference represents the relative stability of OH conformer compared to NH conformer, thus leading to the conclusion that OH protonation site is more likely to exist in the acetamide structure as compared to the NH protonation state.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Neffe2cc63cc24a0b9f9477dea19dbc83
15 Nfe0ed6e76a7347bdb5d3e4ae93ce67a7
16 sg:journal.1127880
17 schema:keywords ATR-FTIR
18 AuCl3
19 DFT calculations
20 Facile protic hydration
21 HOMO-LUMO energy gap
22 HOMO–LUMO energy difference
23 MESP surfaces
24 NH conformers
25 NH protonation state
26 NMR spectroscopic data
27 OH
28 OH conformer
29 OH protonation site
30 P21/c space group
31 Pī space group
32 Raman
33 absence
34 acetamide
35 acetamide salt
36 acetamide structure
37 acetonitrile
38 acid
39 addition
40 ambient conditions
41 anions
42 aptitude
43 bond formation reactions
44 c space group
45 calculations
46 carbon–oxygen bond formation reactions
47 changes
48 chemical transformations
49 chloroauric acid
50 conclusion
51 conditions
52 conformers
53 crystal structure
54 crystallography
55 data
56 delicate functional groups
57 differences
58 energy
59 energy difference
60 energy gap
61 energy of OH
62 enolic form
63 first time
64 form
65 formation reaction
66 fragment of acetamide
67 fragments
68 frontier molecular orbital theory
69 functional groups
70 gap
71 gentle conditions
72 group
73 hydration
74 hydration reaction
75 industry
76 insights
77 isolation
78 kcal/
79 mapping
80 molecular orbital theory
81 monoclinic P21/c space group
82 nitrile hydration
83 non-catalytic hydration reaction
84 orbital theory
85 oxygen
86 pharmaceutical industry
87 presence
88 profile
89 protic hydration
90 proton source
91 protonation
92 protonation aptitude
93 protonation sites
94 protonation state
95 ray crystal structure
96 ray crystallography
97 ray structure
98 reaction
99 relative stability
100 salt
101 sites
102 source
103 space group
104 spectroscopic data
105 stability
106 state
107 structure
108 subsequent changes
109 surface
110 theory
111 time
112 transformation
113 triclinic Pī space group
114 water
115 schema:name Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations
116 schema:pagination 593-607
117 schema:productId Nd7f66bae7f3c4b4a807ab8d4b5ccaf69
118 Nebe95de55ef84b9ba2d1601420fc05b3
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121122736
120 https://doi.org/10.1007/s11164-019-03979-x
121 schema:sdDatePublished 2022-01-01T18:51
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher Nb71361e621934c8488002a1882481a3b
124 schema:url https://doi.org/10.1007/s11164-019-03979-x
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N4b2d0ed8367a4d18abb9a61aed5a28e3 rdf:first N753ed64a3f96481fb2965028ce6cd032
129 rdf:rest N9c7ef490776844a8b04cc3307acc5906
130 N753ed64a3f96481fb2965028ce6cd032 schema:affiliation grid-institutes:grid.254313.2
131 schema:familyName Wakefield
132 schema:givenName Bryan
133 rdf:type schema:Person
134 N876600e7149346eeb07466d918d53504 rdf:first sg:person.010657236535.80
135 rdf:rest N4b2d0ed8367a4d18abb9a61aed5a28e3
136 N9c7ef490776844a8b04cc3307acc5906 rdf:first sg:person.01150467247.16
137 rdf:rest Nc2569f86ed184363b4215f4e110118e8
138 Nb71361e621934c8488002a1882481a3b schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Nc2569f86ed184363b4215f4e110118e8 rdf:first sg:person.01342234217.56
141 rdf:rest Nc674e0e2a9ad401b96d2c2eac4bd473b
142 Nc674e0e2a9ad401b96d2c2eac4bd473b rdf:first sg:person.01137465627.99
143 rdf:rest rdf:nil
144 Nd7f66bae7f3c4b4a807ab8d4b5ccaf69 schema:name dimensions_id
145 schema:value pub.1121122736
146 rdf:type schema:PropertyValue
147 Nd837ad0ee26145cb91593b02bb86d8b7 rdf:first sg:person.014542647267.33
148 rdf:rest N876600e7149346eeb07466d918d53504
149 Nebe95de55ef84b9ba2d1601420fc05b3 schema:name doi
150 schema:value 10.1007/s11164-019-03979-x
151 rdf:type schema:PropertyValue
152 Neffe2cc63cc24a0b9f9477dea19dbc83 schema:volumeNumber 46
153 rdf:type schema:PublicationVolume
154 Nfe0ed6e76a7347bdb5d3e4ae93ce67a7 schema:issueNumber 1
155 rdf:type schema:PublicationIssue
156 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
157 schema:name Chemical Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
160 schema:name Physical Chemistry (incl. Structural)
161 rdf:type schema:DefinedTerm
162 sg:journal.1127880 schema:issn 0922-6168
163 1568-5675
164 schema:name Research on Chemical Intermediates
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.010657236535.80 schema:affiliation grid-institutes:grid.412789.1
168 schema:familyName Abla
169 schema:givenName Fatima
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657236535.80
171 rdf:type schema:Person
172 sg:person.01137465627.99 schema:affiliation grid-institutes:grid.412789.1
173 schema:familyName Mohamed
174 schema:givenName Ahmed A.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137465627.99
176 rdf:type schema:Person
177 sg:person.01150467247.16 schema:affiliation grid-institutes:grid.264756.4
178 schema:familyName Reibenspies
179 schema:givenName Joseph
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150467247.16
181 rdf:type schema:Person
182 sg:person.01342234217.56 schema:affiliation grid-institutes:grid.412789.1
183 schema:familyName Arooj
184 schema:givenName Mahreen
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342234217.56
186 rdf:type schema:Person
187 sg:person.014542647267.33 schema:affiliation grid-institutes:grid.412789.1
188 schema:familyName Shehadi
189 schema:givenName Ihsan
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542647267.33
191 rdf:type schema:Person
192 sg:pub.10.1007/s10870-012-0333-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011904965
193 https://doi.org/10.1007/s10870-012-0333-6
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s11164-014-1589-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044698157
196 https://doi.org/10.1007/s11164-014-1589-6
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s13404-011-0013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044546072
199 https://doi.org/10.1007/s13404-011-0013-x
200 rdf:type schema:CreativeWork
201 sg:pub.10.1023/a:1015224104880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010286781
202 https://doi.org/10.1023/a:1015224104880
203 rdf:type schema:CreativeWork
204 grid-institutes:grid.254313.2 schema:alternateName Department of Chemistry, Coastal Carolina University, 29428-6054, Conway, SC, USA
205 schema:name Department of Chemistry, Coastal Carolina University, 29428-6054, Conway, SC, USA
206 rdf:type schema:Organization
207 grid-institutes:grid.264756.4 schema:alternateName Department of Chemistry, Texas A&M University, 77843, College Station, TX, USA
208 schema:name Department of Chemistry, Texas A&M University, 77843, College Station, TX, USA
209 rdf:type schema:Organization
210 grid-institutes:grid.412789.1 schema:alternateName Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE
211 schema:name Center for Advanced Materials Research, Research Institute for Science and Engineering, University of Sharjah, 27272, Sharjah, UAE
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...