Prediction of College Major Persistence Based on Vocational Interests, Academic Preparation, and First-Year Academic Performance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

Jeff Allen, Steven B. Robbins

ABSTRACT

We hypothesized that college major persistence would be predicted by first-year academic performance and an interest-major composite score that is derived from a student’s entering major and two work task scores. Using a large data set representing 25 four-year institutions and nearly 50,000 students, we randomly split the sample into an estimation sample and a validation sample. Using the estimation sample, we found major-specific coefficients corresponding to the two work task scores that optimized the prediction of major persistence. Then, we applied the estimated coefficients to the validation sample to form an interest-major composite score representing the likelihood of persisting in entering major. Using the validation sample, we then tested a theoretical model for major persistence that incorporated academic preparation, the interest-major composite score, and first-year academic performance. The results suggest that (1) interest-major fit and first-year academic performance work to independently predict whether a student will stay in their entering major and (2) the relative importance of two work task scores in predicting major persistence depends on the entering major. The results support Holland’s theory of person-environment fit and suggest that academic performance and interest-major fit are key constructs for understanding major persistence behavior. More... »

PAGES

62-79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11162-007-9064-5

DOI

http://dx.doi.org/10.1007/s11162-007-9064-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035526237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "ACT Research, ACT, Inc, 52243-0168, Iowa City, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "Jeff", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ACT Research, ACT, Inc, 52243-0168, Iowa City, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robbins", 
        "givenName": "Steven  B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00949659308811554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001270526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11162-004-4140-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005089024", 
          "https://doi.org/10.1007/s11162-004-4140-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11162-004-4140-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005089024", 
          "https://doi.org/10.1007/s11162-004-4140-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.78.6.875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005649105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvb.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006184228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0022-0167.31.3.349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008034232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.2005.00672.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011264642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-6570.2005.00672.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011264642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0022-0663.98.3.598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015495621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvbe.1996.0041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017473907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11162-005-9008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018616192", 
          "https://doi.org/10.1007/s11162-005-9008-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11162-005-9008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018616192", 
          "https://doi.org/10.1007/s11162-005-9008-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1069072704267737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020538794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1069072704267737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020538794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvb.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021690005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvbe.1994.1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026714460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8791(92)90060-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028859428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvb.2004.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029855907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1069072703257756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031741592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1069072703257756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031741592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvbe.1995.1006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033548802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11162-005-9002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045189607", 
          "https://doi.org/10.1007/s11162-005-9002-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11162-005-9002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045189607", 
          "https://doi.org/10.1007/s11162-005-9002-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8791(82)90036-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053289985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2685605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070058733"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02", 
    "datePublishedReg": "2008-02-01", 
    "description": "We hypothesized that college major persistence would be predicted by first-year academic performance and an interest-major composite score that is derived from a student\u2019s entering major and two work task scores. Using a large data set representing 25 four-year institutions and nearly 50,000 students, we randomly split the sample into an estimation sample and a validation sample. Using the estimation sample, we found major-specific coefficients corresponding to the two work task scores that optimized the prediction of major persistence. Then, we applied the estimated coefficients to the validation sample to form an interest-major composite score representing the likelihood of persisting in entering major. Using the validation sample, we then tested a theoretical model for major persistence that incorporated academic preparation, the interest-major composite score, and first-year academic performance. The results suggest that (1) interest-major fit and first-year academic performance work to independently predict whether a student will stay in their entering major and (2) the relative importance of two work task scores in predicting major persistence depends on the entering major. The results support Holland\u2019s theory of person-environment fit and suggest that academic performance and interest-major fit are key constructs for understanding major persistence behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11162-007-9064-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046373", 
        "issn": [
          "0361-0365", 
          "1573-188X"
        ], 
        "name": "Research in Higher Education", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Prediction of College Major Persistence Based on Vocational Interests, Academic Preparation, and First-Year Academic Performance", 
    "pagination": "62-79", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a93b4b7f0720fc24cadcb4799d08760eb31c54757403574a233e3c680e2947ee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11162-007-9064-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035526237"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11162-007-9064-5", 
      "https://app.dimensions.ai/details/publication/pub.1035526237"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113670_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11162-007-9064-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11162-007-9064-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11162-007-9064-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11162-007-9064-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11162-007-9064-5'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11162-007-9064-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7729b5494d734c688d56862d81355353
4 schema:citation sg:pub.10.1007/s11162-004-4140-6
5 sg:pub.10.1007/s11162-005-9002-3
6 sg:pub.10.1007/s11162-005-9008-x
7 https://doi.org/10.1006/jvbe.1994.1038
8 https://doi.org/10.1006/jvbe.1995.1006
9 https://doi.org/10.1006/jvbe.1996.0041
10 https://doi.org/10.1016/0001-8791(82)90036-7
11 https://doi.org/10.1016/0001-8791(92)90060-d
12 https://doi.org/10.1016/j.jvb.2004.11.003
13 https://doi.org/10.1016/j.jvb.2005.11.002
14 https://doi.org/10.1016/j.jvb.2005.11.003
15 https://doi.org/10.1037/0021-9010.78.6.875
16 https://doi.org/10.1037/0022-0167.31.3.349
17 https://doi.org/10.1037/0022-0663.98.3.598
18 https://doi.org/10.1080/00949659308811554
19 https://doi.org/10.1111/j.1744-6570.2005.00672.x
20 https://doi.org/10.1177/1069072703257756
21 https://doi.org/10.1177/1069072704267737
22 https://doi.org/10.2307/2685605
23 schema:datePublished 2008-02
24 schema:datePublishedReg 2008-02-01
25 schema:description We hypothesized that college major persistence would be predicted by first-year academic performance and an interest-major composite score that is derived from a student’s entering major and two work task scores. Using a large data set representing 25 four-year institutions and nearly 50,000 students, we randomly split the sample into an estimation sample and a validation sample. Using the estimation sample, we found major-specific coefficients corresponding to the two work task scores that optimized the prediction of major persistence. Then, we applied the estimated coefficients to the validation sample to form an interest-major composite score representing the likelihood of persisting in entering major. Using the validation sample, we then tested a theoretical model for major persistence that incorporated academic preparation, the interest-major composite score, and first-year academic performance. The results suggest that (1) interest-major fit and first-year academic performance work to independently predict whether a student will stay in their entering major and (2) the relative importance of two work task scores in predicting major persistence depends on the entering major. The results support Holland’s theory of person-environment fit and suggest that academic performance and interest-major fit are key constructs for understanding major persistence behavior.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N195a53b819a146e4b136858c6b1d8ae1
30 N2bbb9736334547e68bde13af69dc8fe2
31 sg:journal.1046373
32 schema:name Prediction of College Major Persistence Based on Vocational Interests, Academic Preparation, and First-Year Academic Performance
33 schema:pagination 62-79
34 schema:productId Nb1b1a89593fd410eb95570bebf499341
35 Nce22ad0d9c17491ea8d28452cb0274a9
36 Nf6b3cfa9a1e54b4a859f3c607d6e324e
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035526237
38 https://doi.org/10.1007/s11162-007-9064-5
39 schema:sdDatePublished 2019-04-11T10:36
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ndf11ef615fdf4145be4dba31f617f92a
42 schema:url https://link.springer.com/10.1007%2Fs11162-007-9064-5
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N195a53b819a146e4b136858c6b1d8ae1 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 N2bbb9736334547e68bde13af69dc8fe2 schema:volumeNumber 49
49 rdf:type schema:PublicationVolume
50 N3a62648734a6402f9aa4ba0560f2201c rdf:first N52fbd548059b4d59b56db85a2dc4534f
51 rdf:rest rdf:nil
52 N3bed028bacbe40748ae859350550149c schema:affiliation N66e2b84fd22446758efc29cc3ec24791
53 schema:familyName Allen
54 schema:givenName Jeff
55 rdf:type schema:Person
56 N52fbd548059b4d59b56db85a2dc4534f schema:affiliation Nbe0b97f03f644409a3bb6b6d3a158b16
57 schema:familyName Robbins
58 schema:givenName Steven B.
59 rdf:type schema:Person
60 N66e2b84fd22446758efc29cc3ec24791 schema:name ACT Research, ACT, Inc, 52243-0168, Iowa City, IA, USA
61 rdf:type schema:Organization
62 N7729b5494d734c688d56862d81355353 rdf:first N3bed028bacbe40748ae859350550149c
63 rdf:rest N3a62648734a6402f9aa4ba0560f2201c
64 Nb1b1a89593fd410eb95570bebf499341 schema:name doi
65 schema:value 10.1007/s11162-007-9064-5
66 rdf:type schema:PropertyValue
67 Nbe0b97f03f644409a3bb6b6d3a158b16 schema:name ACT Research, ACT, Inc, 52243-0168, Iowa City, IA, USA
68 rdf:type schema:Organization
69 Nce22ad0d9c17491ea8d28452cb0274a9 schema:name readcube_id
70 schema:value a93b4b7f0720fc24cadcb4799d08760eb31c54757403574a233e3c680e2947ee
71 rdf:type schema:PropertyValue
72 Ndf11ef615fdf4145be4dba31f617f92a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nf6b3cfa9a1e54b4a859f3c607d6e324e schema:name dimensions_id
75 schema:value pub.1035526237
76 rdf:type schema:PropertyValue
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
81 schema:name Materials Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1046373 schema:issn 0361-0365
84 1573-188X
85 schema:name Research in Higher Education
86 rdf:type schema:Periodical
87 sg:pub.10.1007/s11162-004-4140-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005089024
88 https://doi.org/10.1007/s11162-004-4140-6
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11162-005-9002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045189607
91 https://doi.org/10.1007/s11162-005-9002-3
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11162-005-9008-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018616192
94 https://doi.org/10.1007/s11162-005-9008-x
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1006/jvbe.1994.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714460
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1006/jvbe.1995.1006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033548802
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1006/jvbe.1996.0041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017473907
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0001-8791(82)90036-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053289985
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0001-8791(92)90060-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1028859428
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jvb.2004.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029855907
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jvb.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021690005
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jvb.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006184228
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1037/0021-9010.78.6.875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005649105
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1037/0022-0167.31.3.349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008034232
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1037/0022-0663.98.3.598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015495621
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/00949659308811554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001270526
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1744-6570.2005.00672.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011264642
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1177/1069072703257756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031741592
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1177/1069072704267737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020538794
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2307/2685605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070058733
127 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...