A geometric treatment of time-varying volatilities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Chulwoo Han, Frank C. Park, Jangkoo Kang

ABSTRACT

In this article, we propose a new framework for addressing multivariate time-varying volatilities. By employing methods of differential geometry, our model respects the geometric structure of the covariance space, i.e., symmetry and positive definiteness, in a way that is independent of any local coordinate parametrization. Its parsimonious specification makes it particularly suitable for large dimensional systems. Simulation studies suggest that our model embraces much of the nonlinear behaviour of the covariance dynamics. Applied to the US and the UK stock markets, the model performs well, especially when applied to risk measurement. In a broad context, our framework presents a new approach treating nonlinear properties observed in the financial market, and numerous areas of application can be further considered. More... »

PAGES

1121-1141

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11156-017-0618-0

DOI

http://dx.doi.org/10.1007/s11156-017-0618-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1074233958


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Durham University, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Chulwoo", 
        "id": "sg:person.012006502731.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006502731.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Frank C.", 
        "id": "sg:person.01062014757.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062014757.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "KAIST, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Jangkoo", 
        "id": "sg:person.016046320311.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046320311.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-6419.00172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004249633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013036068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013036068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71297-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014584762", 
          "https://doi.org/10.1007/978-3-540-71297-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71297-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014584762", 
          "https://doi.org/10.1007/978-3-540-71297-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6897-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319281", 
          "https://doi.org/10.1007/s10851-006-6897-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6288.2000.tb01405.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025026858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-405x(98)00029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025913655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030587082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030587082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27816-0_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034885577", 
          "https://doi.org/10.1007/978-3-540-27816-0_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27816-0_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034885577", 
          "https://doi.org/10.1007/978-3-540-27816-0_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/003465303322369858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041920847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11156-007-0050-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051029446", 
          "https://doi.org/10.1007/s11156-007-0050-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466600009063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054890699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466600009063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054890699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/261527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058575008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rfs/11.4.817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060005248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479803436937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062881878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/073500102288618487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/073500102288618496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2938260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070139902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2003.1211342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095703767"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "In this article, we propose a new framework for addressing multivariate time-varying volatilities. By employing methods of differential geometry, our model respects the geometric structure of the covariance space, i.e., symmetry and positive definiteness, in a way that is independent of any local coordinate parametrization. Its parsimonious specification makes it particularly suitable for large dimensional systems. Simulation studies suggest that our model embraces much of the nonlinear behaviour of the covariance dynamics. Applied to the US and the UK stock markets, the model performs well, especially when applied to risk measurement. In a broad context, our framework presents a new approach treating nonlinear properties observed in the financial market, and numerous areas of application can be further considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11156-017-0618-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136353", 
        "issn": [
          "0924-865X", 
          "1573-7179"
        ], 
        "name": "Review of Quantitative Finance and Accounting", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "A geometric treatment of time-varying volatilities", 
    "pagination": "1121-1141", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "520b27d41c1ad48744a2c8a67d192d201481457cf564493b1ea16f7b4d6c57df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11156-017-0618-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1074233958"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11156-017-0618-0", 
      "https://app.dimensions.ai/details/publication/pub.1074233958"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99815_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11156-017-0618-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11156-017-0618-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11156-017-0618-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11156-017-0618-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11156-017-0618-0'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11156-017-0618-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1193c50ca08f4e87988e19d5169cb5a4
4 schema:citation sg:pub.10.1007/978-3-540-27816-0_8
5 sg:pub.10.1007/978-3-540-71297-8_9
6 sg:pub.10.1007/s10851-006-6897-z
7 sg:pub.10.1007/s11156-007-0050-y
8 https://doi.org/10.1002/jae.842
9 https://doi.org/10.1016/j.jeconom.2005.06.023
10 https://doi.org/10.1016/s0304-405x(98)00029-4
11 https://doi.org/10.1017/s0266466600009063
12 https://doi.org/10.1086/261527
13 https://doi.org/10.1093/rfs/11.4.817
14 https://doi.org/10.1109/cvpr.2003.1211342
15 https://doi.org/10.1111/1467-6419.00172
16 https://doi.org/10.1111/j.1540-6288.2000.tb01405.x
17 https://doi.org/10.1137/s0895479803436937
18 https://doi.org/10.1162/003465303322369858
19 https://doi.org/10.1198/073500102288618487
20 https://doi.org/10.1198/073500102288618496
21 https://doi.org/10.2307/1912773
22 https://doi.org/10.2307/2938260
23 schema:datePublished 2017-11
24 schema:datePublishedReg 2017-11-01
25 schema:description In this article, we propose a new framework for addressing multivariate time-varying volatilities. By employing methods of differential geometry, our model respects the geometric structure of the covariance space, i.e., symmetry and positive definiteness, in a way that is independent of any local coordinate parametrization. Its parsimonious specification makes it particularly suitable for large dimensional systems. Simulation studies suggest that our model embraces much of the nonlinear behaviour of the covariance dynamics. Applied to the US and the UK stock markets, the model performs well, especially when applied to risk measurement. In a broad context, our framework presents a new approach treating nonlinear properties observed in the financial market, and numerous areas of application can be further considered.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N47169c77a72f4e9984e39dfe187b50bb
30 Ne026547b67ba4db3bea8a59cee14bdd9
31 sg:journal.1136353
32 schema:name A geometric treatment of time-varying volatilities
33 schema:pagination 1121-1141
34 schema:productId N0a3458fd7b834bffa492fac2cba28dc1
35 N16e82b1558034cb0aba5eb525d94f88b
36 Nf5402228180e4ea193da33d5d2a03c33
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074233958
38 https://doi.org/10.1007/s11156-017-0618-0
39 schema:sdDatePublished 2019-04-11T09:34
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N50c66149d17b403cba773643f90c9aea
42 schema:url https://link.springer.com/10.1007%2Fs11156-017-0618-0
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N06a1ab56e56c4a7ea1cfa3fb72fa7519 rdf:first sg:person.016046320311.94
47 rdf:rest rdf:nil
48 N0a3458fd7b834bffa492fac2cba28dc1 schema:name readcube_id
49 schema:value 520b27d41c1ad48744a2c8a67d192d201481457cf564493b1ea16f7b4d6c57df
50 rdf:type schema:PropertyValue
51 N1193c50ca08f4e87988e19d5169cb5a4 rdf:first sg:person.012006502731.05
52 rdf:rest Ncb02000ae5ca42eea6085870556411b8
53 N16e82b1558034cb0aba5eb525d94f88b schema:name dimensions_id
54 schema:value pub.1074233958
55 rdf:type schema:PropertyValue
56 N47169c77a72f4e9984e39dfe187b50bb schema:volumeNumber 49
57 rdf:type schema:PublicationVolume
58 N50c66149d17b403cba773643f90c9aea schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Ncb02000ae5ca42eea6085870556411b8 rdf:first sg:person.01062014757.30
61 rdf:rest N06a1ab56e56c4a7ea1cfa3fb72fa7519
62 Ne026547b67ba4db3bea8a59cee14bdd9 schema:issueNumber 4
63 rdf:type schema:PublicationIssue
64 Nf5402228180e4ea193da33d5d2a03c33 schema:name doi
65 schema:value 10.1007/s11156-017-0618-0
66 rdf:type schema:PropertyValue
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136353 schema:issn 0924-865X
74 1573-7179
75 schema:name Review of Quantitative Finance and Accounting
76 rdf:type schema:Periodical
77 sg:person.01062014757.30 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
78 schema:familyName Park
79 schema:givenName Frank C.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062014757.30
81 rdf:type schema:Person
82 sg:person.012006502731.05 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
83 schema:familyName Han
84 schema:givenName Chulwoo
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006502731.05
86 rdf:type schema:Person
87 sg:person.016046320311.94 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
88 schema:familyName Kang
89 schema:givenName Jangkoo
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046320311.94
91 rdf:type schema:Person
92 sg:pub.10.1007/978-3-540-27816-0_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034885577
93 https://doi.org/10.1007/978-3-540-27816-0_8
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-3-540-71297-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014584762
96 https://doi.org/10.1007/978-3-540-71297-8_9
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10851-006-6897-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319281
99 https://doi.org/10.1007/s10851-006-6897-z
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11156-007-0050-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051029446
102 https://doi.org/10.1007/s11156-007-0050-y
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/jae.842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013036068
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jeconom.2005.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030587082
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0304-405x(98)00029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025913655
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1017/s0266466600009063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054890699
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1086/261527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058575008
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1093/rfs/11.4.817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005248
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/cvpr.2003.1211342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095703767
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1111/1467-6419.00172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004249633
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1540-6288.2000.tb01405.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025026858
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1137/s0895479803436937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881878
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1162/003465303322369858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041920847
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1198/073500102288618487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198921
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1198/073500102288618496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198922
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2307/1912773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640314
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2307/2938260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070139902
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
135 schema:name Seoul National University, Seoul, South Korea
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.37172.30 schema:alternateName Korea Advanced Institute of Science and Technology
138 schema:name KAIST, Seoul, South Korea
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
141 schema:name Durham University, Durham, UK
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...