Additive Hedonic Regression Models with Spatial Scaling Factors: An Application for Rents in Vienna View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-11

AUTHORS

W. A. Brunauer, S. Lang, P. Wechselberger, S. Bienert

ABSTRACT

This paper is motivated by two common challenges in hedonic price modeling: nonlinear price functions, which require flexible modeling approaches, and the inherent spatial heterogeneity in real estate markets. We apply additive mixed regression models (AMM) to estimate hedonic price equations for rents in Vienna. Non-linear effects of continuous covariates as well as a smooth time trend are modeled non-parametrically through P-splines. Unobserved district-specific heterogeneity is modeled in two ways: First, by location specific intercepts with the postal code serving as a location variable. Second, in order to permit spatial variation in the nonlinear price gradients, we introduce multiplicative scaling factors for nonlinear covariates. This allows highly nonlinear implicit price functions to vary within a regularized framework, accounting for district-specific spatial heterogeneity, which leads to a considerable improvement of model quality and predictive power. Our findings provide insight into the spatially heterogeneous structure of price gradients in Vienna, showing substantial spatial variation. Accounting for spatial heterogeneity in a very general way, this approach permits higher accuracy in prediction and allows for location-specific nonlinear rent index construction. More... »

PAGES

390-411

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11146-009-9177-z

DOI

http://dx.doi.org/10.1007/s11146-009-9177-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039720033


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "IRG Immobilien Rating GmbH, Taborstr. 1-3, 1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brunauer", 
        "givenName": "W. A.", 
        "id": "sg:person.015657455455.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657455455.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Innsbruck", 
          "id": "https://www.grid.ac/institutes/grid.5771.4", 
          "name": [
            "Department of Statistics, Leopold-Franzens-University, Universitaetsstr. 15, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "S.", 
        "id": "sg:person.010223676761.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Innsbruck", 
          "id": "https://www.grid.ac/institutes/grid.5771.4", 
          "name": [
            "Department of Statistics, Leopold-Franzens-University, Universitaetsstr. 15, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wechselberger", 
        "givenName": "P.", 
        "id": "sg:person.010673734161.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673734161.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "KPMG Financial Advisory Services, Adamgasse 23, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bienert", 
        "givenName": "S.", 
        "id": "sg:person.011405207020.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011405207020.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00181-004-0224-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000341093", 
          "https://doi.org/10.1007/s00181-004-0224-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002868506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02673039608720863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002999418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-0462(85)90033-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009108607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-0462(85)90033-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009108607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470690680.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009192364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2004.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015498897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025838007297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017711277", 
          "https://doi.org/10.1023/a:1025838007297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1080-8620.2004.00086.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024567933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2006.00574.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028992075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7799-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030890521", 
          "https://doi.org/10.1007/978-94-015-7799-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7799-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030890521", 
          "https://doi.org/10.1007/978-94-015-7799-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1540-6229.00048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032665324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0160017602250977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034192437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0160017602250977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034192437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2008.00665.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036685246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05617-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038686363", 
          "https://doi.org/10.1007/978-3-662-05617-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05617-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038686363", 
          "https://doi.org/10.1007/978-3-662-05617-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043347046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007703229507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047729753", 
          "https://doi.org/10.1023/a:1007703229507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1255(199611)11:6<633::aid-jae414>3.0.co;2-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048684832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0160017602250972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0160017602250972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/259131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058572612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/260169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058573650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/82.4.733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/1061860043010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v014.i11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1574-0080(99)80010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090061630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511755453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4159/harvard.9780674592582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108712417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109616008"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11", 
    "datePublishedReg": "2010-11-01", 
    "description": "This paper is motivated by two common challenges in hedonic price modeling: nonlinear price functions, which require flexible modeling approaches, and the inherent spatial heterogeneity in real estate markets. We apply additive mixed regression models (AMM) to estimate hedonic price equations for rents in Vienna. Non-linear effects of continuous covariates as well as a smooth time trend are modeled non-parametrically through P-splines. Unobserved district-specific heterogeneity is modeled in two ways: First, by location specific intercepts with the postal code serving as a location variable. Second, in order to permit spatial variation in the nonlinear price gradients, we introduce multiplicative scaling factors for nonlinear covariates. This allows highly nonlinear implicit price functions to vary within a regularized framework, accounting for district-specific spatial heterogeneity, which leads to a considerable improvement of model quality and predictive power. Our findings provide insight into the spatially heterogeneous structure of price gradients in Vienna, showing substantial spatial variation. Accounting for spatial heterogeneity in a very general way, this approach permits higher accuracy in prediction and allows for location-specific nonlinear rent index construction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11146-009-9177-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136061", 
        "issn": [
          "0895-5638", 
          "1573-045X"
        ], 
        "name": "The Journal of Real Estate Finance and Economics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Additive Hedonic Regression Models with Spatial Scaling Factors: An Application for Rents in Vienna", 
    "pagination": "390-411", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd35626ce94e5924397867b63711e5272790e6f4183f3db312f9bd07e8f9c62d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11146-009-9177-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039720033"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11146-009-9177-z", 
      "https://app.dimensions.ai/details/publication/pub.1039720033"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47957_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11146-009-9177-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11146-009-9177-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11146-009-9177-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11146-009-9177-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11146-009-9177-z'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11146-009-9177-z schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N19a7096ab8f24cbdaaaea89f7ff32c8d
4 schema:citation sg:pub.10.1007/978-3-662-05617-2
5 sg:pub.10.1007/978-94-015-7799-1
6 sg:pub.10.1007/s00181-004-0224-6
7 sg:pub.10.1023/a:1007703229507
8 sg:pub.10.1023/a:1025838007297
9 https://doi.org/10.1002/(sici)1099-1255(199611)11:6<633::aid-jae414>3.0.co;2-t
10 https://doi.org/10.1002/9780470690680.ch5
11 https://doi.org/10.1002/jae.929
12 https://doi.org/10.1016/0166-0462(85)90033-x
13 https://doi.org/10.1016/j.csda.2004.10.011
14 https://doi.org/10.1016/s1574-0080(99)80010-8
15 https://doi.org/10.1017/cbo9780511755453
16 https://doi.org/10.1080/02673039608720863
17 https://doi.org/10.1086/259131
18 https://doi.org/10.1086/260169
19 https://doi.org/10.1093/biomet/82.4.733
20 https://doi.org/10.1111/1467-9876.00385
21 https://doi.org/10.1111/1540-6229.00048
22 https://doi.org/10.1111/j.1080-8620.2004.00086.x
23 https://doi.org/10.1111/j.1467-9868.2008.00665.x
24 https://doi.org/10.1111/j.1541-0420.2006.00574.x
25 https://doi.org/10.1177/0160017602250972
26 https://doi.org/10.1177/0160017602250977
27 https://doi.org/10.1198/1061860043010
28 https://doi.org/10.1201/9781420010404
29 https://doi.org/10.1214/ss/1038425655
30 https://doi.org/10.18637/jss.v014.i11
31 https://doi.org/10.4159/harvard.9780674592582
32 schema:datePublished 2010-11
33 schema:datePublishedReg 2010-11-01
34 schema:description This paper is motivated by two common challenges in hedonic price modeling: nonlinear price functions, which require flexible modeling approaches, and the inherent spatial heterogeneity in real estate markets. We apply additive mixed regression models (AMM) to estimate hedonic price equations for rents in Vienna. Non-linear effects of continuous covariates as well as a smooth time trend are modeled non-parametrically through P-splines. Unobserved district-specific heterogeneity is modeled in two ways: First, by location specific intercepts with the postal code serving as a location variable. Second, in order to permit spatial variation in the nonlinear price gradients, we introduce multiplicative scaling factors for nonlinear covariates. This allows highly nonlinear implicit price functions to vary within a regularized framework, accounting for district-specific spatial heterogeneity, which leads to a considerable improvement of model quality and predictive power. Our findings provide insight into the spatially heterogeneous structure of price gradients in Vienna, showing substantial spatial variation. Accounting for spatial heterogeneity in a very general way, this approach permits higher accuracy in prediction and allows for location-specific nonlinear rent index construction.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N50678946535c47aaaa13a932b321d061
39 N9bd87b40be6e465fbf62abdb5b3c8a5e
40 sg:journal.1136061
41 schema:name Additive Hedonic Regression Models with Spatial Scaling Factors: An Application for Rents in Vienna
42 schema:pagination 390-411
43 schema:productId N5026735263844443a159b827db64ccf7
44 N52cf93cd35ed41378f521a49fdd883dd
45 N8bb567d60e8442d3a10274a33011ce6a
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039720033
47 https://doi.org/10.1007/s11146-009-9177-z
48 schema:sdDatePublished 2019-04-11T09:08
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N3deb57dff4a1472b8fb8cc4a8e207651
51 schema:url http://link.springer.com/10.1007%2Fs11146-009-9177-z
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N19a7096ab8f24cbdaaaea89f7ff32c8d rdf:first sg:person.015657455455.48
56 rdf:rest N5e3a8d848afc4c42bdbba5a39f5f4b42
57 N3deb57dff4a1472b8fb8cc4a8e207651 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N5026735263844443a159b827db64ccf7 schema:name doi
60 schema:value 10.1007/s11146-009-9177-z
61 rdf:type schema:PropertyValue
62 N50678946535c47aaaa13a932b321d061 schema:issueNumber 4
63 rdf:type schema:PublicationIssue
64 N52cf93cd35ed41378f521a49fdd883dd schema:name dimensions_id
65 schema:value pub.1039720033
66 rdf:type schema:PropertyValue
67 N5e3a8d848afc4c42bdbba5a39f5f4b42 rdf:first sg:person.010223676761.81
68 rdf:rest Nbf891b8ad2704acdb34be66c1b406c8e
69 N8bb567d60e8442d3a10274a33011ce6a schema:name readcube_id
70 schema:value bd35626ce94e5924397867b63711e5272790e6f4183f3db312f9bd07e8f9c62d
71 rdf:type schema:PropertyValue
72 N9bd87b40be6e465fbf62abdb5b3c8a5e schema:volumeNumber 41
73 rdf:type schema:PublicationVolume
74 Na6c5901e996446a69d73d2c8e082f873 schema:name IRG Immobilien Rating GmbH, Taborstr. 1-3, 1020, Vienna, Austria
75 rdf:type schema:Organization
76 Nbf891b8ad2704acdb34be66c1b406c8e rdf:first sg:person.010673734161.04
77 rdf:rest Ne3c0b8231505412891c661771495c347
78 Ne243dd486ad94e688eb0960f076519d2 schema:name KPMG Financial Advisory Services, Adamgasse 23, 6020, Innsbruck, Austria
79 rdf:type schema:Organization
80 Ne3c0b8231505412891c661771495c347 rdf:first sg:person.011405207020.34
81 rdf:rest rdf:nil
82 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
83 schema:name Economics
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
86 schema:name Econometrics
87 rdf:type schema:DefinedTerm
88 sg:journal.1136061 schema:issn 0895-5638
89 1573-045X
90 schema:name The Journal of Real Estate Finance and Economics
91 rdf:type schema:Periodical
92 sg:person.010223676761.81 schema:affiliation https://www.grid.ac/institutes/grid.5771.4
93 schema:familyName Lang
94 schema:givenName S.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81
96 rdf:type schema:Person
97 sg:person.010673734161.04 schema:affiliation https://www.grid.ac/institutes/grid.5771.4
98 schema:familyName Wechselberger
99 schema:givenName P.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673734161.04
101 rdf:type schema:Person
102 sg:person.011405207020.34 schema:affiliation Ne243dd486ad94e688eb0960f076519d2
103 schema:familyName Bienert
104 schema:givenName S.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011405207020.34
106 rdf:type schema:Person
107 sg:person.015657455455.48 schema:affiliation Na6c5901e996446a69d73d2c8e082f873
108 schema:familyName Brunauer
109 schema:givenName W. A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657455455.48
111 rdf:type schema:Person
112 sg:pub.10.1007/978-3-662-05617-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038686363
113 https://doi.org/10.1007/978-3-662-05617-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-94-015-7799-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030890521
116 https://doi.org/10.1007/978-94-015-7799-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00181-004-0224-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000341093
119 https://doi.org/10.1007/s00181-004-0224-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1023/a:1007703229507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047729753
122 https://doi.org/10.1023/a:1007703229507
123 rdf:type schema:CreativeWork
124 sg:pub.10.1023/a:1025838007297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017711277
125 https://doi.org/10.1023/a:1025838007297
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/(sici)1099-1255(199611)11:6<633::aid-jae414>3.0.co;2-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1048684832
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/9780470690680.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009192364
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/jae.929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002868506
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0166-0462(85)90033-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009108607
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.csda.2004.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498897
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s1574-0080(99)80010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090061630
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/cbo9780511755453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667268
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/02673039608720863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002999418
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1086/259131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058572612
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1086/260169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058573650
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/biomet/82.4.733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420612
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/1467-9876.00385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043347046
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/1540-6229.00048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032665324
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/j.1080-8620.2004.00086.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024567933
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.1467-9868.2008.00665.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036685246
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1111/j.1541-0420.2006.00574.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028992075
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1177/0160017602250972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052413944
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1177/0160017602250977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034192437
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1198/1061860043010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199409
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1201/9781420010404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109616008
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
168 rdf:type schema:CreativeWork
169 https://doi.org/10.18637/jss.v014.i11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672215
170 rdf:type schema:CreativeWork
171 https://doi.org/10.4159/harvard.9780674592582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108712417
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.5771.4 schema:alternateName University of Innsbruck
174 schema:name Department of Statistics, Leopold-Franzens-University, Universitaetsstr. 15, 6020, Innsbruck, Austria
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...