Mathematical modeling of a catalytic membrane reactor: dehydrogenation of methanol over copper on silica-montmorillonite composite View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Ekaterina V. Shelepova, Lyudmila Y. Ilina, Aleksey A. Vedyagin

ABSTRACT

The process of methanol dehydrogenation over nanostructured copper-containing catalyst was simulated using a two-dimensional non-isothermal stationary mathematical model of the catalytic membrane reactor. The model considers mass and heat transfer in both axial and radial directions. Additionally, it takes into account the change of the reaction mixture volume occurs as a result of chemical reactions and selective removal of hydrogen through the membrane. The reaction of methanol dehydrogenation realized within the inner side of tubular membrane reactor was thermodynamically conjugated with hydrogen oxidation reaction taking place in the outer (shell) side. The effects of various parameters on the process performance have been calculated and discussed. The most effective way to realize the process of methanol dehydrogenation in a catalytic membrane reactor was found to use the small values of residence times along with the temperature of the reactor outer wall of about 125–150 °C. The heat generated by the exothermic oxidation reaction in the shell side can be efficiently utilized to warm the reaction zone up to the desired temperature. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11144-019-01567-z

DOI

http://dx.doi.org/10.1007/s11144-019-01567-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113042779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis", 
          "id": "https://www.grid.ac/institutes/grid.418421.a", 
          "name": [
            "Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shelepova", 
        "givenName": "Ekaterina V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis", 
          "id": "https://www.grid.ac/institutes/grid.418421.a", 
          "name": [
            "Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilina", 
        "givenName": "Lyudmila Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia", 
            "National Research Tomsk Polytechnic University, Lenin av., 30, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vedyagin", 
        "givenName": "Aleksey A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0920-5861(01)00280-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006416247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-9953(11)60417-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007743921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(94)80030-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010734926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cherd.2010.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011198891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.22185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011676259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jiec.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012120518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2005.07.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015154833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(00)00469-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017005779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2015.06.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020839354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2009.04.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022517081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(95)00059-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022801094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0010508213020019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415956", 
          "https://doi.org/10.1134/s0010508213020019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.13794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025654462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1381-1169(01)00149-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026140950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078014060172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135215", 
          "https://doi.org/10.1134/s1995078014060172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(94)80010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028205236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-016-1135-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028494824", 
          "https://doi.org/10.1007/s11144-016-1135-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-016-1135-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028494824", 
          "https://doi.org/10.1007/s11144-016-1135-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2006.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028903760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116030129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030992131", 
          "https://doi.org/10.1134/s0965544116030129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(94)00138-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031855377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(94)00138-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031855377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2991(00)80945-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032836490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2005.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033326901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033331357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5861(99)00028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035578348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2011.06.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037078583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2008.03.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046472587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01496398708068978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047600572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116110104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083752166", 
          "https://doi.org/10.1134/s0965544116110104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116110104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083752166", 
          "https://doi.org/10.1134/s0965544116110104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-017-1191-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085072275", 
          "https://doi.org/10.1007/s11144-017-1191-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-017-1191-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085072275", 
          "https://doi.org/10.1007/s11144-017-1191-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-017-1214-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085999702", 
          "https://doi.org/10.1007/s11144-017-1214-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-017-1214-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085999702", 
          "https://doi.org/10.1007/s11144-017-1214-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2017.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092916203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11696-018-0491-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103779291", 
          "https://doi.org/10.1007/s11696-018-0491-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "The process of methanol dehydrogenation over nanostructured copper-containing catalyst was simulated using a two-dimensional non-isothermal stationary mathematical model of the catalytic membrane reactor. The model considers mass and heat transfer in both axial and radial directions. Additionally, it takes into account the change of the reaction mixture volume occurs as a result of chemical reactions and selective removal of hydrogen through the membrane. The reaction of methanol dehydrogenation realized within the inner side of tubular membrane reactor was thermodynamically conjugated with hydrogen oxidation reaction taking place in the outer (shell) side. The effects of various parameters on the process performance have been calculated and discussed. The most effective way to realize the process of methanol dehydrogenation in a catalytic membrane reactor was found to use the small values of residence times along with the temperature of the reactor outer wall of about 125\u2013150 \u00b0C. The heat generated by the exothermic oxidation reaction in the shell side can be efficiently utilized to warm the reaction zone up to the desired temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11144-019-01567-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136587", 
        "issn": [
          "1878-5190", 
          "1878-5204"
        ], 
        "name": "Reaction Kinetics, Mechanisms and Catalysis", 
        "type": "Periodical"
      }
    ], 
    "name": "Mathematical modeling of a catalytic membrane reactor: dehydrogenation of methanol over copper on silica-montmorillonite composite", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "37c77cf4c8cbca05b4822d174854c6d3132adb4654e3150aa9ee9dd061f28685"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11144-019-01567-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113042779"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11144-019-01567-z", 
      "https://app.dimensions.ai/details/publication/pub.1113042779"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78935_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11144-019-01567-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01567-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01567-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01567-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01567-z'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      56 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11144-019-01567-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ndb1935cef24c455b983463092b23c596
4 schema:citation sg:pub.10.1007/s11144-016-1135-1
5 sg:pub.10.1007/s11144-017-1191-1
6 sg:pub.10.1007/s11144-017-1214-y
7 sg:pub.10.1007/s11696-018-0491-x
8 sg:pub.10.1134/s0010508213020019
9 sg:pub.10.1134/s0965544116030129
10 sg:pub.10.1134/s0965544116110104
11 sg:pub.10.1134/s1995078014060172
12 https://doi.org/10.1002/aic.13794
13 https://doi.org/10.1002/cjce.22185
14 https://doi.org/10.1016/0009-2509(95)00059-e
15 https://doi.org/10.1016/0376-7388(94)00138-3
16 https://doi.org/10.1016/0376-7388(94)80010-3
17 https://doi.org/10.1016/0376-7388(94)80030-8
18 https://doi.org/10.1016/j.apcata.2005.07.040
19 https://doi.org/10.1016/j.cattod.2017.11.023
20 https://doi.org/10.1016/j.cej.2009.04.057
21 https://doi.org/10.1016/j.cej.2011.06.048
22 https://doi.org/10.1016/j.cep.2005.02.004
23 https://doi.org/10.1016/j.cherd.2010.01.013
24 https://doi.org/10.1016/j.jcat.2006.03.018
25 https://doi.org/10.1016/j.jiec.2015.07.002
26 https://doi.org/10.1016/j.jngse.2015.06.052
27 https://doi.org/10.1016/j.jngse.2016.04.002
28 https://doi.org/10.1016/j.memsci.2008.03.051
29 https://doi.org/10.1016/s0009-2509(00)00469-3
30 https://doi.org/10.1016/s0167-2991(00)80945-3
31 https://doi.org/10.1016/s0920-5861(01)00280-2
32 https://doi.org/10.1016/s0920-5861(99)00028-0
33 https://doi.org/10.1016/s1003-9953(11)60417-9
34 https://doi.org/10.1016/s1381-1169(01)00149-2
35 https://doi.org/10.1080/01496398708068978
36 schema:datePublished 2019-03-27
37 schema:datePublishedReg 2019-03-27
38 schema:description The process of methanol dehydrogenation over nanostructured copper-containing catalyst was simulated using a two-dimensional non-isothermal stationary mathematical model of the catalytic membrane reactor. The model considers mass and heat transfer in both axial and radial directions. Additionally, it takes into account the change of the reaction mixture volume occurs as a result of chemical reactions and selective removal of hydrogen through the membrane. The reaction of methanol dehydrogenation realized within the inner side of tubular membrane reactor was thermodynamically conjugated with hydrogen oxidation reaction taking place in the outer (shell) side. The effects of various parameters on the process performance have been calculated and discussed. The most effective way to realize the process of methanol dehydrogenation in a catalytic membrane reactor was found to use the small values of residence times along with the temperature of the reactor outer wall of about 125–150 °C. The heat generated by the exothermic oxidation reaction in the shell side can be efficiently utilized to warm the reaction zone up to the desired temperature.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1136587
43 schema:name Mathematical modeling of a catalytic membrane reactor: dehydrogenation of methanol over copper on silica-montmorillonite composite
44 schema:pagination 1-19
45 schema:productId N286279628d04486c81d487a341b61a7e
46 Nb080ae01493a4db1a378ad2e8d4c3a06
47 Ncb98dfec17b84f398c176866ba3b4c45
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113042779
49 https://doi.org/10.1007/s11144-019-01567-z
50 schema:sdDatePublished 2019-04-11T13:17
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Ned06cc0bd3ac442e8b7815f6bbae35ea
53 schema:url https://link.springer.com/10.1007%2Fs11144-019-01567-z
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N286279628d04486c81d487a341b61a7e schema:name readcube_id
58 schema:value 37c77cf4c8cbca05b4822d174854c6d3132adb4654e3150aa9ee9dd061f28685
59 rdf:type schema:PropertyValue
60 N68eea096600e4d0d8d3991409e001d72 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
61 schema:familyName Vedyagin
62 schema:givenName Aleksey A.
63 rdf:type schema:Person
64 Nb080ae01493a4db1a378ad2e8d4c3a06 schema:name dimensions_id
65 schema:value pub.1113042779
66 rdf:type schema:PropertyValue
67 Nb82c9596969a4ee3929fc826401130d2 rdf:first Ne47e25bce8f94fc2b4b2c2ad10813b22
68 rdf:rest Ncce010d4fa5a464488adb785b63be8b3
69 Ncb98dfec17b84f398c176866ba3b4c45 schema:name doi
70 schema:value 10.1007/s11144-019-01567-z
71 rdf:type schema:PropertyValue
72 Ncce010d4fa5a464488adb785b63be8b3 rdf:first N68eea096600e4d0d8d3991409e001d72
73 rdf:rest rdf:nil
74 Ndb1935cef24c455b983463092b23c596 rdf:first Nefd3a17d97254f2383b504ed7eb017eb
75 rdf:rest Nb82c9596969a4ee3929fc826401130d2
76 Ne47e25bce8f94fc2b4b2c2ad10813b22 schema:affiliation https://www.grid.ac/institutes/grid.418421.a
77 schema:familyName Ilina
78 schema:givenName Lyudmila Y.
79 rdf:type schema:Person
80 Ned06cc0bd3ac442e8b7815f6bbae35ea schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nefd3a17d97254f2383b504ed7eb017eb schema:affiliation https://www.grid.ac/institutes/grid.418421.a
83 schema:familyName Shelepova
84 schema:givenName Ekaterina V.
85 rdf:type schema:Person
86 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
87 schema:name Chemical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Chemistry (incl. Structural)
91 rdf:type schema:DefinedTerm
92 sg:journal.1136587 schema:issn 1878-5190
93 1878-5204
94 schema:name Reaction Kinetics, Mechanisms and Catalysis
95 rdf:type schema:Periodical
96 sg:pub.10.1007/s11144-016-1135-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028494824
97 https://doi.org/10.1007/s11144-016-1135-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s11144-017-1191-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085072275
100 https://doi.org/10.1007/s11144-017-1191-1
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11144-017-1214-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085999702
103 https://doi.org/10.1007/s11144-017-1214-y
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11696-018-0491-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103779291
106 https://doi.org/10.1007/s11696-018-0491-x
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0010508213020019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415956
109 https://doi.org/10.1134/s0010508213020019
110 rdf:type schema:CreativeWork
111 sg:pub.10.1134/s0965544116030129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030992131
112 https://doi.org/10.1134/s0965544116030129
113 rdf:type schema:CreativeWork
114 sg:pub.10.1134/s0965544116110104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083752166
115 https://doi.org/10.1134/s0965544116110104
116 rdf:type schema:CreativeWork
117 sg:pub.10.1134/s1995078014060172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028135215
118 https://doi.org/10.1134/s1995078014060172
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/aic.13794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025654462
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/cjce.22185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011676259
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0009-2509(95)00059-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1022801094
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0376-7388(94)00138-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031855377
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0376-7388(94)80010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028205236
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0376-7388(94)80030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010734926
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.apcata.2005.07.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015154833
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cattod.2017.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092916203
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cej.2009.04.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022517081
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cej.2011.06.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037078583
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.cep.2005.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033326901
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.cherd.2010.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011198891
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jcat.2006.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028903760
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jiec.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012120518
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jngse.2015.06.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020839354
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jngse.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033331357
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.memsci.2008.03.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046472587
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0009-2509(00)00469-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017005779
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0167-2991(00)80945-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032836490
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0920-5861(01)00280-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006416247
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0920-5861(99)00028-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035578348
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s1003-9953(11)60417-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743921
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s1381-1169(01)00149-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026140950
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/01496398708068978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047600572
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
169 schema:name Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia
170 National Research Tomsk Polytechnic University, Lenin av., 30, 634050, Tomsk, Russia
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.418421.a schema:alternateName Boreskov Institute of Catalysis
173 schema:name Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...