Development of a modified kinetic model for residual oil hydroprocessing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Xinyuan Li, Zhou Yang, Shenghua Yuan, Yanbo Weng, Xinguo Geng, Weikun Lai, Xiaodong Yi, Weiping Fang

ABSTRACT

A basic conversion model for hydrodesulfurization (HDS) is developed according to corresponding reaction process. Further improvement is conducted on the model considering the HDS characteristics and industrial demand. The model can quantitatively describe the effect of operational conditions, deactivation behavior and residual properties on HDS. By comparison with the experimental data, the calculated conversions are all found to have a total average relative deviation of less than 5%, presenting a good fit in relation to the experimental data. Moreover, the model can also accurately predict the performance of hydrodecarbonresidue and hydrodemetallization. Results indicate that the model has a high universality and practicability. More... »

PAGES

1-17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11144-019-01556-2

DOI

http://dx.doi.org/10.1007/s11144-019-01556-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112703318


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xinyuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhou", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SINOPEC Dalian Research Institute of Petroleum and Petrochemicals, 116041, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Shenghua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SINOPEC Dalian Research Institute of Petroleum and Petrochemicals, 116041, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weng", 
        "givenName": "Yanbo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SINOPEC Dalian Research Institute of Petroleum and Petrochemicals, 116041, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geng", 
        "givenName": "Xinguo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Weikun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Xiaodong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Weiping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.fuel.2014.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004869631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-860x(03)00200-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010443325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-860x(03)00200-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010443325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2007.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011974509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2012.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015751105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-015-0477-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523457", 
          "https://doi.org/10.1007/s10910-015-0477-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2008.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026376014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2010.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028492615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2012.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040363578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2007.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049303876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2008.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049321607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1872-2067(10)60180-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049688181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2013.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051674508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.5b02082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055085992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.6b02581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055087273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef020045g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055475361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef020045g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055475361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef049843s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055475982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef049843s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055475982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie00020a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055591345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie00077a025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055594050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie5006492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055611510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4758458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058061370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3176/oil.2013.4.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071107155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3176/oil.2013.4.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071107155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.6b03109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084121932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.7b00496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084782007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.7b00360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085296642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2017.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090345417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crci.2017.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091085686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ra07833a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091736975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acscatal.8b00629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101633600"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "A basic conversion model for hydrodesulfurization (HDS) is developed according to corresponding reaction process. Further improvement is conducted on the model considering the HDS characteristics and industrial demand. The model can quantitatively describe the effect of operational conditions, deactivation behavior and residual properties on HDS. By comparison with the experimental data, the calculated conversions are all found to have a total average relative deviation of less than 5%, presenting a good fit in relation to the experimental data. Moreover, the model can also accurately predict the performance of hydrodecarbonresidue and hydrodemetallization. Results indicate that the model has a high universality and practicability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11144-019-01556-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136587", 
        "issn": [
          "1878-5190", 
          "1878-5204"
        ], 
        "name": "Reaction Kinetics, Mechanisms and Catalysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "126"
      }
    ], 
    "name": "Development of a modified kinetic model for residual oil hydroprocessing", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6d880726081bab86c835b30fff44bd88491a82df7c67509d7454a9c081816a4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11144-019-01556-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112703318"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11144-019-01556-2", 
      "https://app.dimensions.ai/details/publication/pub.1112703318"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11144-019-01556-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01556-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01556-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01556-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11144-019-01556-2'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11144-019-01556-2 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N7184ed84473a4af8b3fae75002aea747
4 schema:citation sg:pub.10.1007/s10910-015-0477-7
5 https://doi.org/10.1016/j.apcata.2012.02.034
6 https://doi.org/10.1016/j.cattod.2010.05.011
7 https://doi.org/10.1016/j.cattod.2013.04.008
8 https://doi.org/10.1016/j.cattod.2017.07.001
9 https://doi.org/10.1016/j.cep.2007.10.004
10 https://doi.org/10.1016/j.compchemeng.2008.01.003
11 https://doi.org/10.1016/j.compchemeng.2008.02.004
12 https://doi.org/10.1016/j.crci.2017.07.001
13 https://doi.org/10.1016/j.fuel.2007.11.013
14 https://doi.org/10.1016/j.fuel.2012.03.019
15 https://doi.org/10.1016/j.fuel.2014.03.056
16 https://doi.org/10.1016/s0926-860x(03)00200-x
17 https://doi.org/10.1016/s1872-2067(10)60180-5
18 https://doi.org/10.1021/acs.energyfuels.5b02082
19 https://doi.org/10.1021/acs.energyfuels.6b02581
20 https://doi.org/10.1021/acs.energyfuels.6b03109
21 https://doi.org/10.1021/acs.energyfuels.7b00360
22 https://doi.org/10.1021/acs.energyfuels.7b00496
23 https://doi.org/10.1021/acscatal.8b00629
24 https://doi.org/10.1021/ef020045g
25 https://doi.org/10.1021/ef049843s
26 https://doi.org/10.1021/ie00020a007
27 https://doi.org/10.1021/ie00077a025
28 https://doi.org/10.1021/ie5006492
29 https://doi.org/10.1039/c7ra07833a
30 https://doi.org/10.1063/1.4758458
31 https://doi.org/10.3176/oil.2013.4.05
32 schema:datePublished 2019-04
33 schema:datePublishedReg 2019-04-01
34 schema:description A basic conversion model for hydrodesulfurization (HDS) is developed according to corresponding reaction process. Further improvement is conducted on the model considering the HDS characteristics and industrial demand. The model can quantitatively describe the effect of operational conditions, deactivation behavior and residual properties on HDS. By comparison with the experimental data, the calculated conversions are all found to have a total average relative deviation of less than 5%, presenting a good fit in relation to the experimental data. Moreover, the model can also accurately predict the performance of hydrodecarbonresidue and hydrodemetallization. Results indicate that the model has a high universality and practicability.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N15078aa72a1d4f01bc25e4186e2b20b5
39 N73cddc409d4d42ef88dd8e446a4205ee
40 sg:journal.1136587
41 schema:name Development of a modified kinetic model for residual oil hydroprocessing
42 schema:pagination 1-17
43 schema:productId N0d909dddd00e44cd89cc96cfb8d26542
44 N5217cb272e8949c9959a01a9e8af5984
45 N542aa86d172b4585a36d7bccdc7ccf3c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703318
47 https://doi.org/10.1007/s11144-019-01556-2
48 schema:sdDatePublished 2019-04-11T14:00
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ndf64c91981b24e6280dcf4689d89fd7e
51 schema:url https://link.springer.com/10.1007%2Fs11144-019-01556-2
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0d909dddd00e44cd89cc96cfb8d26542 schema:name doi
56 schema:value 10.1007/s11144-019-01556-2
57 rdf:type schema:PropertyValue
58 N0da7087f531e448e9bf85157541f2d68 schema:name SINOPEC Dalian Research Institute of Petroleum and Petrochemicals, 116041, Dalian, China
59 rdf:type schema:Organization
60 N15078aa72a1d4f01bc25e4186e2b20b5 schema:volumeNumber 126
61 rdf:type schema:PublicationVolume
62 N1672bf2485144144a56e253a57a44e65 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
63 schema:familyName Fang
64 schema:givenName Weiping
65 rdf:type schema:Person
66 N1d19db859e4d4575bc50b8b59e50d54e schema:name SINOPEC Dalian Research Institute of Petroleum and Petrochemicals, 116041, Dalian, China
67 rdf:type schema:Organization
68 N34601cfbdeb24a689dcd0b0f5316d7e5 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
69 schema:familyName Li
70 schema:givenName Xinyuan
71 rdf:type schema:Person
72 N42013b70c86a4d0b95578226df7c9e77 rdf:first N1672bf2485144144a56e253a57a44e65
73 rdf:rest rdf:nil
74 N4c171601e8d34bfa972812f4ff9727fd schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
75 schema:familyName Yang
76 schema:givenName Zhou
77 rdf:type schema:Person
78 N5217cb272e8949c9959a01a9e8af5984 schema:name dimensions_id
79 schema:value pub.1112703318
80 rdf:type schema:PropertyValue
81 N542aa86d172b4585a36d7bccdc7ccf3c schema:name readcube_id
82 schema:value b6d880726081bab86c835b30fff44bd88491a82df7c67509d7454a9c081816a4
83 rdf:type schema:PropertyValue
84 N62f45a6455fe4062985d083ab283eb88 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
85 schema:familyName Lai
86 schema:givenName Weikun
87 rdf:type schema:Person
88 N6e0da791a3b945e4aae1f9e3d3194cc4 schema:name SINOPEC Dalian Research Institute of Petroleum and Petrochemicals, 116041, Dalian, China
89 rdf:type schema:Organization
90 N7184ed84473a4af8b3fae75002aea747 rdf:first N34601cfbdeb24a689dcd0b0f5316d7e5
91 rdf:rest N9fbaec279b8540d7aebff41a1f018abb
92 N73cddc409d4d42ef88dd8e446a4205ee schema:issueNumber 2
93 rdf:type schema:PublicationIssue
94 N7cd97a9fbe7b4cf68932ba0273e06aa5 rdf:first N9abb1bd88adc4a948d48c728da2c9558
95 rdf:rest N42013b70c86a4d0b95578226df7c9e77
96 N9abb1bd88adc4a948d48c728da2c9558 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
97 schema:familyName Yi
98 schema:givenName Xiaodong
99 rdf:type schema:Person
100 N9fbaec279b8540d7aebff41a1f018abb rdf:first N4c171601e8d34bfa972812f4ff9727fd
101 rdf:rest Nf9eafecbad4241d29b3d6a2842c52c68
102 Nad1e7fa0f5c24446bfa9159d3301fda6 schema:affiliation N0da7087f531e448e9bf85157541f2d68
103 schema:familyName Weng
104 schema:givenName Yanbo
105 rdf:type schema:Person
106 Nb996a07ce1f241d69583fa4cdf5701ad rdf:first N62f45a6455fe4062985d083ab283eb88
107 rdf:rest N7cd97a9fbe7b4cf68932ba0273e06aa5
108 Nd1e5bbc7b8ac4cc08b051151852079d8 rdf:first Nf9f1efc981b940bf8708988b3182c8bf
109 rdf:rest Nb996a07ce1f241d69583fa4cdf5701ad
110 Ndf64c91981b24e6280dcf4689d89fd7e schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Ne9b5fd206d3d4ec2bf8f8f51176ca4d8 rdf:first Nad1e7fa0f5c24446bfa9159d3301fda6
113 rdf:rest Nd1e5bbc7b8ac4cc08b051151852079d8
114 Nee96f1c506c549dbbd477da70b046b58 schema:affiliation N6e0da791a3b945e4aae1f9e3d3194cc4
115 schema:familyName Yuan
116 schema:givenName Shenghua
117 rdf:type schema:Person
118 Nf9eafecbad4241d29b3d6a2842c52c68 rdf:first Nee96f1c506c549dbbd477da70b046b58
119 rdf:rest Ne9b5fd206d3d4ec2bf8f8f51176ca4d8
120 Nf9f1efc981b940bf8708988b3182c8bf schema:affiliation N1d19db859e4d4575bc50b8b59e50d54e
121 schema:familyName Geng
122 schema:givenName Xinguo
123 rdf:type schema:Person
124 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
125 schema:name Psychology and Cognitive Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
128 schema:name Psychology
129 rdf:type schema:DefinedTerm
130 sg:journal.1136587 schema:issn 1878-5190
131 1878-5204
132 schema:name Reaction Kinetics, Mechanisms and Catalysis
133 rdf:type schema:Periodical
134 sg:pub.10.1007/s10910-015-0477-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019523457
135 https://doi.org/10.1007/s10910-015-0477-7
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.apcata.2012.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040363578
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cattod.2010.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028492615
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cattod.2013.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051674508
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cattod.2017.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090345417
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cep.2007.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049303876
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.compchemeng.2008.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026376014
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.compchemeng.2008.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049321607
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.crci.2017.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091085686
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.fuel.2007.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011974509
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.fuel.2012.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015751105
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.fuel.2014.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004869631
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0926-860x(03)00200-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010443325
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s1872-2067(10)60180-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049688181
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/acs.energyfuels.5b02082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055085992
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/acs.energyfuels.6b02581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055087273
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/acs.energyfuels.6b03109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084121932
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/acs.energyfuels.7b00360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085296642
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/acs.energyfuels.7b00496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084782007
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/acscatal.8b00629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101633600
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/ef020045g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055475361
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/ef049843s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055475982
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/ie00020a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055591345
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/ie00077a025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055594050
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/ie5006492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055611510
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1039/c7ra07833a schema:sameAs https://app.dimensions.ai/details/publication/pub.1091736975
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.4758458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058061370
188 rdf:type schema:CreativeWork
189 https://doi.org/10.3176/oil.2013.4.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071107155
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
192 schema:name National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...