Effect of Fe reduced-modification on TiO2 supported Fe–Mn catalyst for NO removal by NH3 at low temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Hongping Chen, Xue Qi, Yinghua Liang, Xu Yang

ABSTRACT

TiO2 is modified by Fe-doping reduction method to regulate the pore structure of TiO2. When the Fe/Ti molar ratio of 0.05, the Fe–Mn/TiO2 (0.05Fe) catalyst shows an almost 100% NO conversion and N2 selectivity in the range of 170–250 °C. The catalyst exhibits a catalytic activity above 95% even in the presence of SO2 and water. The N2 adsorption–desorption, XRD, H2-TPR, XPS, TG and TEM are used to characterize the catalysts. The results show that the modification of Fe in the TiO2 carrier enlarges the catalysts’ BET surface area, increases the proportion of the high valence states of Mn on the surface, and promotes more defect of the lattice oxygen, and makes TiO2 be coated and protected. All these modification keeps the catalyst having a high and stable SCR activity and sulfur and water resistance at low temperature. More... »

PAGES

1-13

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11144-018-1517-7

DOI

http://dx.doi.org/10.1007/s11144-018-1517-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110448836


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electeocatalytic Materials, North China University of Science and Technology, 063210, Tangshan, Hebei, China", 
            "Hebei Province Coal Chemical Engineering Technology Research Center, 063000, Tangshan, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hongping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electeocatalytic Materials, North China University of Science and Technology, 063210, Tangshan, Hebei, China", 
            "Energine Guoxuan (Tangshan) Lithium Battery Co., Ltd., 063000, Tangshan, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Xue", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electeocatalytic Materials, North China University of Science and Technology, 063210, Tangshan, Hebei, China", 
            "Hebei Province Coal Chemical Engineering Technology Research Center, 063000, Tangshan, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Yinghua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electeocatalytic Materials, North China University of Science and Technology, 063210, Tangshan, Hebei, China", 
            "Hebei Province Coal Chemical Engineering Technology Research Center, 063000, Tangshan, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apcatb.2012.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008893284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2016.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008948074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2013.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010551928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2012.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016519313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2014.10.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017153436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020363421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2009.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021652110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2013.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027492199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-0742(09)60274-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028729894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2015.02.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036698426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-3373(03)00100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044675344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-3373(03)00100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044675344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044924024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2015.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045568940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2015.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050527238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acscatal.6b01121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055134304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie060484t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055600072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie060484t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055600072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie970734t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055646848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie970734t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055646848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp907783g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056117520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp907783g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056117520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp912163k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056119762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp912163k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056119762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1872-2067(16)62572-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074204278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2017.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084523330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2017.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085915133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2017.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086314232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2017.08.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091401364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2017.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100086426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2018.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101817807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2018.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101817807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-018-1433-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104606124", 
          "https://doi.org/10.1007/s11144-018-1433-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "TiO2 is modified by Fe-doping reduction method to regulate the pore structure of TiO2. When the Fe/Ti molar ratio of 0.05, the Fe\u2013Mn/TiO2 (0.05Fe) catalyst shows an almost 100% NO conversion and N2 selectivity in the range of 170\u2013250 \u00b0C. The catalyst exhibits a catalytic activity above 95% even in the presence of SO2 and water. The N2 adsorption\u2013desorption, XRD, H2-TPR, XPS, TG and TEM are used to characterize the catalysts. The results show that the modification of Fe in the TiO2 carrier enlarges the catalysts\u2019 BET surface area, increases the proportion of the high valence states of Mn on the surface, and promotes more defect of the lattice oxygen, and makes TiO2 be coated and protected. All these modification keeps the catalyst having a high and stable SCR activity and sulfur and water resistance at low temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11144-018-1517-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136587", 
        "issn": [
          "1878-5190", 
          "1878-5204"
        ], 
        "name": "Reaction Kinetics, Mechanisms and Catalysis", 
        "type": "Periodical"
      }
    ], 
    "name": "Effect of Fe reduced-modification on TiO2 supported Fe\u2013Mn catalyst for NO removal by NH3 at low temperature", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "05462ce946632f551bd71300f7b7f08b7c0c1d0f8bd413d7c33f8a4946276a33"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11144-018-1517-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110448836"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11144-018-1517-7", 
      "https://app.dimensions.ai/details/publication/pub.1110448836"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000290_0000000290/records_34925_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11144-018-1517-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11144-018-1517-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11144-018-1517-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11144-018-1517-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11144-018-1517-7'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      52 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11144-018-1517-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne9a03dc732d542e49a45e2046f7efec2
4 schema:citation sg:pub.10.1007/s11144-018-1433-x
5 https://doi.org/10.1016/j.apcata.2016.05.002
6 https://doi.org/10.1016/j.apcata.2017.12.016
7 https://doi.org/10.1016/j.apcatb.2009.09.029
8 https://doi.org/10.1016/j.apcatb.2012.01.001
9 https://doi.org/10.1016/j.apcatb.2012.04.012
10 https://doi.org/10.1016/j.apcatb.2013.04.030
11 https://doi.org/10.1016/j.apcatb.2013.09.016
12 https://doi.org/10.1016/j.apcatb.2014.10.060
13 https://doi.org/10.1016/j.apcatb.2017.04.016
14 https://doi.org/10.1016/j.apsusc.2017.08.135
15 https://doi.org/10.1016/j.catcom.2015.01.003
16 https://doi.org/10.1016/j.catcom.2018.02.019
17 https://doi.org/10.1016/j.cattod.2017.06.015
18 https://doi.org/10.1016/j.cej.2015.02.072
19 https://doi.org/10.1016/j.cej.2015.12.002
20 https://doi.org/10.1016/j.cej.2017.06.015
21 https://doi.org/10.1016/j.jcat.2015.03.002
22 https://doi.org/10.1016/j.jcat.2015.11.013
23 https://doi.org/10.1016/s0926-3373(03)00100-0
24 https://doi.org/10.1016/s1001-0742(09)60274-6
25 https://doi.org/10.1016/s1872-2067(16)62572-x
26 https://doi.org/10.1021/acscatal.6b01121
27 https://doi.org/10.1021/ie060484t
28 https://doi.org/10.1021/ie970734t
29 https://doi.org/10.1021/jp907783g
30 https://doi.org/10.1021/jp912163k
31 schema:datePublished 2019-02
32 schema:datePublishedReg 2019-02-01
33 schema:description TiO2 is modified by Fe-doping reduction method to regulate the pore structure of TiO2. When the Fe/Ti molar ratio of 0.05, the Fe–Mn/TiO2 (0.05Fe) catalyst shows an almost 100% NO conversion and N2 selectivity in the range of 170–250 °C. The catalyst exhibits a catalytic activity above 95% even in the presence of SO2 and water. The N2 adsorption–desorption, XRD, H2-TPR, XPS, TG and TEM are used to characterize the catalysts. The results show that the modification of Fe in the TiO2 carrier enlarges the catalysts’ BET surface area, increases the proportion of the high valence states of Mn on the surface, and promotes more defect of the lattice oxygen, and makes TiO2 be coated and protected. All these modification keeps the catalyst having a high and stable SCR activity and sulfur and water resistance at low temperature.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1136587
38 schema:name Effect of Fe reduced-modification on TiO2 supported Fe–Mn catalyst for NO removal by NH3 at low temperature
39 schema:pagination 1-13
40 schema:productId N4855200499494f17bc4f893cb1948a25
41 Nb9b9b85fee164793a6f838be02f17fd7
42 Nfda575e312b147f7a01ba51bab7d9c41
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448836
44 https://doi.org/10.1007/s11144-018-1517-7
45 schema:sdDatePublished 2019-04-11T08:21
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N188a198df71941429bba0db0494a8e83
48 schema:url https://link.springer.com/10.1007%2Fs11144-018-1517-7
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N02263cdde1114eafab184e334bfc736b schema:affiliation https://www.grid.ac/institutes/grid.440734.0
53 schema:familyName Liang
54 schema:givenName Yinghua
55 rdf:type schema:Person
56 N188a198df71941429bba0db0494a8e83 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N1cbd78146b59476eb76d505e163979ac rdf:first N913b6dd17b1b42969a44526220f71cde
59 rdf:rest Nf22fe46e1710433da562bcc18b381fe9
60 N221dfcfd36c44d32a1de56385bcc14d7 schema:affiliation https://www.grid.ac/institutes/grid.440734.0
61 schema:familyName Chen
62 schema:givenName Hongping
63 rdf:type schema:Person
64 N4855200499494f17bc4f893cb1948a25 schema:name readcube_id
65 schema:value 05462ce946632f551bd71300f7b7f08b7c0c1d0f8bd413d7c33f8a4946276a33
66 rdf:type schema:PropertyValue
67 N913b6dd17b1b42969a44526220f71cde schema:affiliation https://www.grid.ac/institutes/grid.440734.0
68 schema:familyName Qi
69 schema:givenName Xue
70 rdf:type schema:Person
71 N98f429b0994a49c0899bef0e456c9c00 rdf:first Nc2521e8547d0452fa5cf3270f201c6c8
72 rdf:rest rdf:nil
73 Nb9b9b85fee164793a6f838be02f17fd7 schema:name doi
74 schema:value 10.1007/s11144-018-1517-7
75 rdf:type schema:PropertyValue
76 Nc2521e8547d0452fa5cf3270f201c6c8 schema:affiliation https://www.grid.ac/institutes/grid.440734.0
77 schema:familyName Yang
78 schema:givenName Xu
79 rdf:type schema:Person
80 Ne9a03dc732d542e49a45e2046f7efec2 rdf:first N221dfcfd36c44d32a1de56385bcc14d7
81 rdf:rest N1cbd78146b59476eb76d505e163979ac
82 Nf22fe46e1710433da562bcc18b381fe9 rdf:first N02263cdde1114eafab184e334bfc736b
83 rdf:rest N98f429b0994a49c0899bef0e456c9c00
84 Nfda575e312b147f7a01ba51bab7d9c41 schema:name dimensions_id
85 schema:value pub.1110448836
86 rdf:type schema:PropertyValue
87 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
88 schema:name Chemical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Chemistry (incl. Structural)
92 rdf:type schema:DefinedTerm
93 sg:journal.1136587 schema:issn 1878-5190
94 1878-5204
95 schema:name Reaction Kinetics, Mechanisms and Catalysis
96 rdf:type schema:Periodical
97 sg:pub.10.1007/s11144-018-1433-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104606124
98 https://doi.org/10.1007/s11144-018-1433-x
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.apcata.2016.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008948074
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.apcata.2017.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100086426
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.apcatb.2009.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021652110
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.apcatb.2012.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016519313
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.apcatb.2012.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008893284
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.apcatb.2013.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027492199
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.apcatb.2013.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010551928
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.apcatb.2014.10.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017153436
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.apcatb.2017.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084523330
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.apsusc.2017.08.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091401364
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.catcom.2015.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050527238
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.catcom.2018.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101817807
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cattod.2017.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086314232
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cej.2015.02.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036698426
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.cej.2015.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044924024
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.cej.2017.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085915133
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jcat.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020363421
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jcat.2015.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045568940
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0926-3373(03)00100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044675344
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1001-0742(09)60274-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028729894
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s1872-2067(16)62572-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1074204278
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/acscatal.6b01121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055134304
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1021/ie060484t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055600072
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/ie970734t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055646848
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/jp907783g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056117520
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/jp912163k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056119762
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.440734.0 schema:alternateName Hebei United University
153 schema:name College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electeocatalytic Materials, North China University of Science and Technology, 063210, Tangshan, Hebei, China
154 Energine Guoxuan (Tangshan) Lithium Battery Co., Ltd., 063000, Tangshan, Hebei, China
155 Hebei Province Coal Chemical Engineering Technology Research Center, 063000, Tangshan, Hebei, China
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...