Two-Bunch Solutions for the Dynamics of Ott–Antonsen Phase Ensembles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

I. V. Tyulkina, D. S. Goldobin, L. S. Klimenko, A. S. Pikovsky

ABSTRACT

We have developed a method for deriving systems of closed equations for the dynamics of order parameters in the ensembles of phase oscillators. The Ott–Antonsen equation for the complex order parameter is a particular case of such equations. The simplest nontrivial extension of the Ott–Antonsen equation corresponds to two-bunch states of the ensemble. Based on the equations obtained, we study the dynamics of multi-bunch chimera states in coupled Kuramoto–Sakaguchi ensembles. We show an increase in the dimensionality of the system dynamics for two-bunch chimeras in the case of identical phase elements and a transition to one-bunch “Abrams chimeras” for imperfect identity (in the latter case, the one-bunch chimeras become attractive). More... »

PAGES

640-649

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11141-019-09924-7

DOI

http://dx.doi.org/10.1007/s11141-019-09924-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112918831


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State University of Perm, Perm, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77611.36", 
          "name": [
            "State University of Perm, Perm, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tyulkina", 
        "givenName": "I. V.", 
        "id": "sg:person.011620133356.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011620133356.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences, Perm, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "State University of Perm, Perm, Russia", 
            "Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences, Perm, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldobin", 
        "givenName": "D. S.", 
        "id": "sg:person.012040307757.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012040307757.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences, Perm, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "State University of Perm, Perm, Russia", 
            "Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences, Perm, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klimenko", 
        "givenName": "L. S.", 
        "id": "sg:person.013264326175.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264326175.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.28171.3d", 
          "name": [
            "Potsdam University, Potsdam, Germany", 
            "N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pikovsky", 
        "givenName": "A. S.", 
        "id": "sg:person.0662125177.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662125177.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep38518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004854779", 
          "https://doi.org/10.1038/srep38518"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "We have developed a method for deriving systems of closed equations for the dynamics of order parameters in the ensembles of phase oscillators. The Ott\u2013Antonsen equation for the complex order parameter is a particular case of such equations. The simplest nontrivial extension of the Ott\u2013Antonsen equation corresponds to two-bunch states of the ensemble. Based on the equations obtained, we study the dynamics of multi-bunch chimera states in coupled Kuramoto\u2013Sakaguchi ensembles. We show an increase in the dimensionality of the system dynamics for two-bunch chimeras in the case of identical phase elements and a transition to one-bunch \u201cAbrams chimeras\u201d for imperfect identity (in the latter case, the one-bunch chimeras become attractive).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11141-019-09924-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136671", 
        "issn": [
          "0033-8443", 
          "1573-9120"
        ], 
        "name": "Radiophysics and Quantum Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8-9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "keywords": [
      "Ott\u2013Antonsen equation", 
      "order parameter", 
      "complex order parameter", 
      "such equations", 
      "closed equation", 
      "phase oscillators", 
      "nontrivial extension", 
      "chimera states", 
      "system dynamics", 
      "equations", 
      "particular case", 
      "ensemble", 
      "dynamics", 
      "parameters", 
      "dimensionality", 
      "oscillator", 
      "phase element", 
      "solution", 
      "extension", 
      "state", 
      "transition", 
      "cases", 
      "system", 
      "elements", 
      "increase", 
      "identity", 
      "chimeras", 
      "method", 
      "simplest nontrivial extension", 
      "two-bunch states", 
      "multi-bunch chimera states", 
      "Kuramoto\u2013Sakaguchi ensembles", 
      "two-bunch chimeras", 
      "identical phase elements", 
      "one-bunch", 
      "Abrams chimeras", 
      "imperfect identity", 
      "Two-Bunch Solutions", 
      "Ott\u2013Antonsen Phase Ensembles", 
      "Phase Ensembles"
    ], 
    "name": "Two-Bunch Solutions for the Dynamics of Ott\u2013Antonsen Phase Ensembles", 
    "pagination": "640-649", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112918831"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11141-019-09924-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11141-019-09924-7", 
      "https://app.dimensions.ai/details/publication/pub.1112918831"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_807.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11141-019-09924-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11141-019-09924-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11141-019-09924-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11141-019-09924-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11141-019-09924-7'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      22 PREDICATES      67 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11141-019-09924-7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N6ae1b288ca8f46f8924c3c3baee56369
4 schema:citation sg:pub.10.1038/srep38518
5 schema:datePublished 2019-01
6 schema:datePublishedReg 2019-01-01
7 schema:description We have developed a method for deriving systems of closed equations for the dynamics of order parameters in the ensembles of phase oscillators. The Ott–Antonsen equation for the complex order parameter is a particular case of such equations. The simplest nontrivial extension of the Ott–Antonsen equation corresponds to two-bunch states of the ensemble. Based on the equations obtained, we study the dynamics of multi-bunch chimera states in coupled Kuramoto–Sakaguchi ensembles. We show an increase in the dimensionality of the system dynamics for two-bunch chimeras in the case of identical phase elements and a transition to one-bunch “Abrams chimeras” for imperfect identity (in the latter case, the one-bunch chimeras become attractive).
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9c7edf969833484698a2bd6fa075ea2b
12 Nb9fcf0796cb14f079cf6573535949733
13 sg:journal.1136671
14 schema:keywords Abrams chimeras
15 Kuramoto–Sakaguchi ensembles
16 Ott–Antonsen Phase Ensembles
17 Ott–Antonsen equation
18 Phase Ensembles
19 Two-Bunch Solutions
20 cases
21 chimera states
22 chimeras
23 closed equation
24 complex order parameter
25 dimensionality
26 dynamics
27 elements
28 ensemble
29 equations
30 extension
31 identical phase elements
32 identity
33 imperfect identity
34 increase
35 method
36 multi-bunch chimera states
37 nontrivial extension
38 one-bunch
39 order parameter
40 oscillator
41 parameters
42 particular case
43 phase element
44 phase oscillators
45 simplest nontrivial extension
46 solution
47 state
48 such equations
49 system
50 system dynamics
51 transition
52 two-bunch chimeras
53 two-bunch states
54 schema:name Two-Bunch Solutions for the Dynamics of Ott–Antonsen Phase Ensembles
55 schema:pagination 640-649
56 schema:productId N3a6f4c8f15b6499d92e3a7bdd199d83f
57 N43f280831beb4311b595a8316567ade1
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112918831
59 https://doi.org/10.1007/s11141-019-09924-7
60 schema:sdDatePublished 2021-12-01T19:43
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Neafcff7973f243ddae034c27893be433
63 schema:url https://doi.org/10.1007/s11141-019-09924-7
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N313f3f93bae94b7a8273ead0f2462749 rdf:first sg:person.0662125177.25
68 rdf:rest rdf:nil
69 N3a6f4c8f15b6499d92e3a7bdd199d83f schema:name dimensions_id
70 schema:value pub.1112918831
71 rdf:type schema:PropertyValue
72 N43f280831beb4311b595a8316567ade1 schema:name doi
73 schema:value 10.1007/s11141-019-09924-7
74 rdf:type schema:PropertyValue
75 N4ce3ffd2eba14b86a7d9892303d01477 rdf:first sg:person.012040307757.15
76 rdf:rest Nfcff1fa21b984c5086c917ab313a1591
77 N6ae1b288ca8f46f8924c3c3baee56369 rdf:first sg:person.011620133356.39
78 rdf:rest N4ce3ffd2eba14b86a7d9892303d01477
79 N9c7edf969833484698a2bd6fa075ea2b schema:issueNumber 8-9
80 rdf:type schema:PublicationIssue
81 Nb9fcf0796cb14f079cf6573535949733 schema:volumeNumber 61
82 rdf:type schema:PublicationVolume
83 Neafcff7973f243ddae034c27893be433 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nfcff1fa21b984c5086c917ab313a1591 rdf:first sg:person.013264326175.97
86 rdf:rest N313f3f93bae94b7a8273ead0f2462749
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
91 schema:name Applied Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1136671 schema:issn 0033-8443
94 1573-9120
95 schema:name Radiophysics and Quantum Electronics
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.011620133356.39 schema:affiliation grid-institutes:grid.77611.36
99 schema:familyName Tyulkina
100 schema:givenName I. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011620133356.39
102 rdf:type schema:Person
103 sg:person.012040307757.15 schema:affiliation grid-institutes:grid.426536.0
104 schema:familyName Goldobin
105 schema:givenName D. S.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012040307757.15
107 rdf:type schema:Person
108 sg:person.013264326175.97 schema:affiliation grid-institutes:grid.426536.0
109 schema:familyName Klimenko
110 schema:givenName L. S.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264326175.97
112 rdf:type schema:Person
113 sg:person.0662125177.25 schema:affiliation grid-institutes:grid.28171.3d
114 schema:familyName Pikovsky
115 schema:givenName A. S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662125177.25
117 rdf:type schema:Person
118 sg:pub.10.1038/srep38518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004854779
119 https://doi.org/10.1038/srep38518
120 rdf:type schema:CreativeWork
121 grid-institutes:grid.28171.3d schema:alternateName N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
122 schema:name N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
123 Potsdam University, Potsdam, Germany
124 rdf:type schema:Organization
125 grid-institutes:grid.426536.0 schema:alternateName Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences, Perm, Russia
126 schema:name Institute for Mechanics of Continuous Media, Ural Branch of the Russian Academy of Sciences, Perm, Russia
127 State University of Perm, Perm, Russia
128 rdf:type schema:Organization
129 grid-institutes:grid.77611.36 schema:alternateName State University of Perm, Perm, Russia
130 schema:name State University of Perm, Perm, Russia
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...