Sur les plus grands facteurs premiers inférieur à y d’entiers consécutifs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-16

AUTHORS

Zhiwei Wang

ABSTRACT

Let Py+(n) denote the largest prime factor p of n with p⩽y. We prove that there exists a positive proportion of integers n such that Py+(n)result. More... »

PAGES

1-8

References to SciGraph publications

  • 2005-03. Products of Ratios of Consecutive Integers in THE RAMANUJAN JOURNAL
  • 1978-02. On the largest prime factors ofn andn + 1 in AEQUATIONES MATHEMATICAE
  • 2002-08. On pseudo-random properties of P (n) and P (n + 1) in PERIODICA MATHEMATICA HUNGARICA
  • Journal

    TITLE

    The Ramanujan Journal

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z

    DOI

    http://dx.doi.org/10.1007/s11139-018-0110-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112829809


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut \u00c9lie Cartan de Lorraine", 
              "id": "https://www.grid.ac/institutes/grid.462063.5", 
              "name": [
                "School of Mathematics, Shandong University, 250100, Jinan, Shandong, China", 
                "Institut \u00c9lie Cartan de Lorraine, Universit\u00e9 de Lorraine, UMR 7502, 54506, Vand\u0153uvre-l\u00e8s-Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhiwei", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1015289816905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025853730", 
              "https://doi.org/10.1023/a:1015289816905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11139-005-0831-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045374955", 
              "https://doi.org/10.1007/s11139-005-0831-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11139-005-0831-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045374955", 
              "https://doi.org/10.1007/s11139-005-0831-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049846501", 
              "https://doi.org/10.1007/bf01818569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/proc/13459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059345773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1556/sscmath.38.2001.1-4.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067895220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1556/sscmath.38.2001.1-4.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067895220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-36-2-171-202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092011820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s0025579317000547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103179866"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-16", 
        "datePublishedReg": "2019-03-16", 
        "description": "Let Py+(n) denote the largest prime factor p of n with p\u2a7dy. We prove that there exists a positive proportion of integers n such that Py+(n)
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    71 TRIPLES      20 PREDICATES      29 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11139-018-0110-z schema:author Nfeb420e453924022b9ed709a54ec9490
    2 schema:citation sg:pub.10.1007/bf01818569
    3 sg:pub.10.1007/s11139-005-0831-7
    4 sg:pub.10.1023/a:1015289816905
    5 https://doi.org/10.1090/proc/13459
    6 https://doi.org/10.1112/s0025579317000547
    7 https://doi.org/10.1556/sscmath.38.2001.1-4.3
    8 https://doi.org/10.4064/aa-36-2-171-202
    9 schema:datePublished 2019-03-16
    10 schema:datePublishedReg 2019-03-16
    11 schema:description Let Py+(n) denote the largest prime factor p of n with p⩽y. We prove that there exists a positive proportion of integers n such that Py+(n)<Py+(n+1) for y=xα when α is small. Especially, the proportion is larger than 1 / 4 when α tends to 0, which improves our previous result.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf sg:journal.1136382
    16 schema:name Sur les plus grands facteurs premiers inférieur à y d’entiers consécutifs
    17 schema:pagination 1-8
    18 schema:productId N4407782e28f44bc9bb4358ebb51abc68
    19 Na029c2b6bf6e4889bc4fbca51430a50f
    20 Nd61644759b354d6e841025e49909b411
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112829809
    22 https://doi.org/10.1007/s11139-018-0110-z
    23 schema:sdDatePublished 2019-04-11T12:04
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Nb37ee31d636346ac838602d566cd1444
    26 schema:url https://link.springer.com/10.1007%2Fs11139-018-0110-z
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N0bcf03b2ade3427ab0023fcecc0a2db3 schema:affiliation https://www.grid.ac/institutes/grid.462063.5
    31 schema:familyName Wang
    32 schema:givenName Zhiwei
    33 rdf:type schema:Person
    34 N4407782e28f44bc9bb4358ebb51abc68 schema:name doi
    35 schema:value 10.1007/s11139-018-0110-z
    36 rdf:type schema:PropertyValue
    37 Na029c2b6bf6e4889bc4fbca51430a50f schema:name dimensions_id
    38 schema:value pub.1112829809
    39 rdf:type schema:PropertyValue
    40 Nb37ee31d636346ac838602d566cd1444 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 Nd61644759b354d6e841025e49909b411 schema:name readcube_id
    43 schema:value e8c26f46d116789130a75c74696c39298a08e8ba3857296375c1db5f6478ed86
    44 rdf:type schema:PropertyValue
    45 Nfeb420e453924022b9ed709a54ec9490 rdf:first N0bcf03b2ade3427ab0023fcecc0a2db3
    46 rdf:rest rdf:nil
    47 sg:journal.1136382 schema:issn 1382-4090
    48 1572-9303
    49 schema:name The Ramanujan Journal
    50 rdf:type schema:Periodical
    51 sg:pub.10.1007/bf01818569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049846501
    52 https://doi.org/10.1007/bf01818569
    53 rdf:type schema:CreativeWork
    54 sg:pub.10.1007/s11139-005-0831-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045374955
    55 https://doi.org/10.1007/s11139-005-0831-7
    56 rdf:type schema:CreativeWork
    57 sg:pub.10.1023/a:1015289816905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025853730
    58 https://doi.org/10.1023/a:1015289816905
    59 rdf:type schema:CreativeWork
    60 https://doi.org/10.1090/proc/13459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345773
    61 rdf:type schema:CreativeWork
    62 https://doi.org/10.1112/s0025579317000547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103179866
    63 rdf:type schema:CreativeWork
    64 https://doi.org/10.1556/sscmath.38.2001.1-4.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067895220
    65 rdf:type schema:CreativeWork
    66 https://doi.org/10.4064/aa-36-2-171-202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092011820
    67 rdf:type schema:CreativeWork
    68 https://www.grid.ac/institutes/grid.462063.5 schema:alternateName Institut Élie Cartan de Lorraine
    69 schema:name Institut Élie Cartan de Lorraine, Université de Lorraine, UMR 7502, 54506, Vandœuvre-lès-Nancy, France
    70 School of Mathematics, Shandong University, 250100, Jinan, Shandong, China
    71 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...