Sur les plus grands facteurs premiers inférieur à y d’entiers consécutifs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-16

AUTHORS

Zhiwei Wang

ABSTRACT

Let Py+(n) denote the largest prime factor p of n with p⩽y. We prove that there exists a positive proportion of integers n such that Py+(n)result. More... »

PAGES

1-8

References to SciGraph publications

Journal

TITLE

The Ramanujan Journal

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z

DOI

http://dx.doi.org/10.1007/s11139-018-0110-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112829809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut \u00c9lie Cartan de Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.462063.5", 
          "name": [
            "School of Mathematics, Shandong University, 250100, Jinan, Shandong, China", 
            "Institut \u00c9lie Cartan de Lorraine, Universit\u00e9 de Lorraine, UMR 7502, 54506, Vand\u0153uvre-l\u00e8s-Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhiwei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1015289816905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025853730", 
          "https://doi.org/10.1023/a:1015289816905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-005-0831-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045374955", 
          "https://doi.org/10.1007/s11139-005-0831-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-005-0831-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045374955", 
          "https://doi.org/10.1007/s11139-005-0831-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01818569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049846501", 
          "https://doi.org/10.1007/bf01818569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/proc/13459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059345773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1556/sscmath.38.2001.1-4.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067895220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1556/sscmath.38.2001.1-4.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067895220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa-36-2-171-202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092011820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579317000547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103179866"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-16", 
    "datePublishedReg": "2019-03-16", 
    "description": "Let Py+(n) denote the largest prime factor p of n with p\u2a7dy. We prove that there exists a positive proportion of integers n such that Py+(n)
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11139-018-0110-z'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      29 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11139-018-0110-z schema:author Nf8cc1eae7d9e4345aad3c4e842c76639
2 schema:citation sg:pub.10.1007/bf01818569
3 sg:pub.10.1007/s11139-005-0831-7
4 sg:pub.10.1023/a:1015289816905
5 https://doi.org/10.1090/proc/13459
6 https://doi.org/10.1112/s0025579317000547
7 https://doi.org/10.1556/sscmath.38.2001.1-4.3
8 https://doi.org/10.4064/aa-36-2-171-202
9 schema:datePublished 2019-03-16
10 schema:datePublishedReg 2019-03-16
11 schema:description Let Py+(n) denote the largest prime factor p of n with p⩽y. We prove that there exists a positive proportion of integers n such that Py+(n)<Py+(n+1) for y=xα when α is small. Especially, the proportion is larger than 1 / 4 when α tends to 0, which improves our previous result.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf sg:journal.1136382
16 schema:name Sur les plus grands facteurs premiers inférieur à y d’entiers consécutifs
17 schema:pagination 1-8
18 schema:productId N563c4b28c6394eeaae1fe965d461a538
19 N814d4b332ea14b9394e6bd1467f11ec8
20 Nc9bcb5478c024acfba563ea9ba654c1b
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112829809
22 https://doi.org/10.1007/s11139-018-0110-z
23 schema:sdDatePublished 2019-04-11T12:04
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N3b72b8caefea4d869ac8717920bd360d
26 schema:url https://link.springer.com/10.1007%2Fs11139-018-0110-z
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N3b72b8caefea4d869ac8717920bd360d schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N547f8ea269d84c20ab5117e993587e5d schema:affiliation https://www.grid.ac/institutes/grid.462063.5
33 schema:familyName Wang
34 schema:givenName Zhiwei
35 rdf:type schema:Person
36 N563c4b28c6394eeaae1fe965d461a538 schema:name readcube_id
37 schema:value e8c26f46d116789130a75c74696c39298a08e8ba3857296375c1db5f6478ed86
38 rdf:type schema:PropertyValue
39 N814d4b332ea14b9394e6bd1467f11ec8 schema:name dimensions_id
40 schema:value pub.1112829809
41 rdf:type schema:PropertyValue
42 Nc9bcb5478c024acfba563ea9ba654c1b schema:name doi
43 schema:value 10.1007/s11139-018-0110-z
44 rdf:type schema:PropertyValue
45 Nf8cc1eae7d9e4345aad3c4e842c76639 rdf:first N547f8ea269d84c20ab5117e993587e5d
46 rdf:rest rdf:nil
47 sg:journal.1136382 schema:issn 1382-4090
48 1572-9303
49 schema:name The Ramanujan Journal
50 rdf:type schema:Periodical
51 sg:pub.10.1007/bf01818569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049846501
52 https://doi.org/10.1007/bf01818569
53 rdf:type schema:CreativeWork
54 sg:pub.10.1007/s11139-005-0831-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045374955
55 https://doi.org/10.1007/s11139-005-0831-7
56 rdf:type schema:CreativeWork
57 sg:pub.10.1023/a:1015289816905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025853730
58 https://doi.org/10.1023/a:1015289816905
59 rdf:type schema:CreativeWork
60 https://doi.org/10.1090/proc/13459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345773
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1112/s0025579317000547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103179866
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1556/sscmath.38.2001.1-4.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067895220
65 rdf:type schema:CreativeWork
66 https://doi.org/10.4064/aa-36-2-171-202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092011820
67 rdf:type schema:CreativeWork
68 https://www.grid.ac/institutes/grid.462063.5 schema:alternateName Institut Élie Cartan de Lorraine
69 schema:name Institut Élie Cartan de Lorraine, Université de Lorraine, UMR 7502, 54506, Vandœuvre-lès-Nancy, France
70 School of Mathematics, Shandong University, 250100, Jinan, Shandong, China
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...