Poincaré square series for the Weil representation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Brandon Williams

ABSTRACT

We calculate the Jacobi Eisenstein series of weight k≥3 for a certain representation of the Jacobi group, and evaluate these at z=0 to give coefficient formulas for a family of modular forms Qk,m,β of weight k≥5/2 for the (dual) Weil representation on an even lattice. The forms we construct have rational coefficients and contain all cusp forms within their span. We explain how to compute the representation numbers in the coefficient formulas for Qk,m,β and the Eisenstein series of Bruinier and Kuss p-adically to get an efficient algorithm. The main application is in constructing automorphic products. More... »

PAGES

605-650

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11139-017-9986-2

DOI

http://dx.doi.org/10.1007/s11139-017-9986-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101631093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "Brandon", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1515/crll.1974.268-269.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005480729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024495704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495704", 
          "https://doi.org/10.1007/978-1-4684-9162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495704", 
          "https://doi.org/10.1007/978-1-4684-9162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-013-1145-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030443634", 
          "https://doi.org/10.1007/s00209-013-1145-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032505399", 
          "https://doi.org/10.1007/s002220050232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02942329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037806825", 
          "https://doi.org/10.1007/bf02942329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02942329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037806825", 
          "https://doi.org/10.1007/bf02942329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000016706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038551993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02358528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039674931", 
          "https://doi.org/10.1007/bf02358528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02358528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039674931", 
          "https://doi.org/10.1007/bf02358528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0065299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041685042", 
          "https://doi.org/10.1007/bfb0065299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-014-1383-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298937", 
          "https://doi.org/10.1007/s00209-014-1383-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016357029843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049708474", 
          "https://doi.org/10.1023/a:1016357029843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s229-001-8027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310720", 
          "https://doi.org/10.1007/s229-001-8027-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2016.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052628132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2016.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052628132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2016.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052628132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2016.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052628132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mcom/2992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059342793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imrn/rnn166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059690381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-99-09710-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1086032748", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1086032748", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We calculate the Jacobi Eisenstein series of weight k\u22653 for a certain representation of the Jacobi group, and evaluate these at z=0 to give coefficient formulas for a family of modular forms Qk,m,\u03b2 of weight k\u22655/2 for the (dual) Weil representation on an even lattice. The forms we construct have rational coefficients and contain all cusp forms within their span. We explain how to compute the representation numbers in the coefficient formulas for Qk,m,\u03b2 and the Eisenstein series of Bruinier and Kuss p-adically to get an efficient algorithm. The main application is in constructing automorphic products.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11139-017-9986-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136382", 
        "issn": [
          "1382-4090", 
          "1572-9303"
        ], 
        "name": "The Ramanujan Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Poincar\u00e9 square series for the Weil representation", 
    "pagination": "605-650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a4314ed3eb0c960edcd0c16d21cea3ebcfa0dd3cc13ee96f32f7e15814ee60d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11139-017-9986-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101631093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11139-017-9986-2", 
      "https://app.dimensions.ai/details/publication/pub.1101631093"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11139-017-9986-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11139-017-9986-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11139-017-9986-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11139-017-9986-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11139-017-9986-2'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11139-017-9986-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4d87c9e945ac4f46b28501be39e0d225
4 schema:citation sg:pub.10.1007/978-1-4684-9162-3
5 sg:pub.10.1007/bf02358528
6 sg:pub.10.1007/bf02942329
7 sg:pub.10.1007/bfb0065299
8 sg:pub.10.1007/s00209-013-1145-x
9 sg:pub.10.1007/s00209-014-1383-6
10 sg:pub.10.1007/s002220050232
11 sg:pub.10.1007/s229-001-8027-1
12 sg:pub.10.1023/a:1016357029843
13 https://app.dimensions.ai/details/publication/pub.1024495704
14 https://app.dimensions.ai/details/publication/pub.1086032748
15 https://doi.org/10.1016/j.aim.2016.09.003
16 https://doi.org/10.1017/s0027763000016706
17 https://doi.org/10.1090/mcom/2992
18 https://doi.org/10.1093/imrn/rnn166
19 https://doi.org/10.1215/s0012-7094-99-09710-7
20 https://doi.org/10.1515/crll.1974.268-269.110
21 schema:datePublished 2018-12
22 schema:datePublishedReg 2018-12-01
23 schema:description We calculate the Jacobi Eisenstein series of weight k≥3 for a certain representation of the Jacobi group, and evaluate these at z=0 to give coefficient formulas for a family of modular forms Qk,m,β of weight k≥5/2 for the (dual) Weil representation on an even lattice. The forms we construct have rational coefficients and contain all cusp forms within their span. We explain how to compute the representation numbers in the coefficient formulas for Qk,m,β and the Eisenstein series of Bruinier and Kuss p-adically to get an efficient algorithm. The main application is in constructing automorphic products.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N2e95e187f0584dafb73039161690caee
28 Ne2f6a0e3fe204d28be13e8e9f4ea4156
29 sg:journal.1136382
30 schema:name Poincaré square series for the Weil representation
31 schema:pagination 605-650
32 schema:productId N53d9392d30df47b0adf93c12c4491caa
33 Nb5cb72755e744527a4dec08cecd02922
34 Ne9be39853c62496ea5cc046ea65aa286
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101631093
36 https://doi.org/10.1007/s11139-017-9986-2
37 schema:sdDatePublished 2019-04-11T12:26
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nfe2f5cff409a4a989c504c64d1a63f90
40 schema:url https://link.springer.com/10.1007%2Fs11139-017-9986-2
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N2e95e187f0584dafb73039161690caee schema:volumeNumber 47
45 rdf:type schema:PublicationVolume
46 N4d87c9e945ac4f46b28501be39e0d225 rdf:first N98a35eb3d99341fe9e07f65bf5516c06
47 rdf:rest rdf:nil
48 N53d9392d30df47b0adf93c12c4491caa schema:name dimensions_id
49 schema:value pub.1101631093
50 rdf:type schema:PropertyValue
51 N98a35eb3d99341fe9e07f65bf5516c06 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
52 schema:familyName Williams
53 schema:givenName Brandon
54 rdf:type schema:Person
55 Nb5cb72755e744527a4dec08cecd02922 schema:name readcube_id
56 schema:value 3a4314ed3eb0c960edcd0c16d21cea3ebcfa0dd3cc13ee96f32f7e15814ee60d
57 rdf:type schema:PropertyValue
58 Ne2f6a0e3fe204d28be13e8e9f4ea4156 schema:issueNumber 3
59 rdf:type schema:PublicationIssue
60 Ne9be39853c62496ea5cc046ea65aa286 schema:name doi
61 schema:value 10.1007/s11139-017-9986-2
62 rdf:type schema:PropertyValue
63 Nfe2f5cff409a4a989c504c64d1a63f90 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136382 schema:issn 1382-4090
72 1572-9303
73 schema:name The Ramanujan Journal
74 rdf:type schema:Periodical
75 sg:pub.10.1007/978-1-4684-9162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495704
76 https://doi.org/10.1007/978-1-4684-9162-3
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf02358528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039674931
79 https://doi.org/10.1007/bf02358528
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf02942329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037806825
82 https://doi.org/10.1007/bf02942329
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bfb0065299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041685042
85 https://doi.org/10.1007/bfb0065299
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00209-013-1145-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443634
88 https://doi.org/10.1007/s00209-013-1145-x
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00209-014-1383-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298937
91 https://doi.org/10.1007/s00209-014-1383-6
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s002220050232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032505399
94 https://doi.org/10.1007/s002220050232
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s229-001-8027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310720
97 https://doi.org/10.1007/s229-001-8027-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1023/a:1016357029843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049708474
100 https://doi.org/10.1023/a:1016357029843
101 rdf:type schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1024495704 schema:CreativeWork
103 https://app.dimensions.ai/details/publication/pub.1086032748 schema:CreativeWork
104 https://doi.org/10.1016/j.aim.2016.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052628132
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1017/s0027763000016706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038551993
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1090/mcom/2992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059342793
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1093/imrn/rnn166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059690381
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1215/s0012-7094-99-09710-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420503
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1515/crll.1974.268-269.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005480729
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
117 schema:name University of California, Berkeley, CA, USA
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...