The adjoint of some linear maps constructed with the Rankin–Cohen brackets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Sebastián Daniel Herrero

ABSTRACT

Given a fixed modular form of level 1 we define a family of linear operators between spaces of cusp forms by use of the Rankin–Cohen brackets and we compute the adjoint maps of such family with respect to the usual Petersson inner product. This is done in terms of the effect on the Fourier development of cusp forms. This is a generalization of a result due to W. Kohnen. As an application we prove certain relations among Fourier coefficients of cusp forms. More... »

PAGES

529-536

References to SciGraph publications

  • 1995-05. Construction of Jacobi forms in MATHEMATISCHE ZEITSCHRIFT
  • 1975-10. Sums involving the values at negative integers of L-functions of quadratic characters in MATHEMATISCHE ANNALEN
  • 1991-05. Cusp forms and special values of certain Dirichlet series in MATHEMATISCHE ZEITSCHRIFT
  • 1994-02. Modular forms and differential operators in PROCEEDINGS - MATHEMATICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11139-013-9536-5

    DOI

    http://dx.doi.org/10.1007/s11139-013-9536-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010517609


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Pontifical Catholic University of Chile", 
              "id": "https://www.grid.ac/institutes/grid.7870.8", 
              "name": [
                "Dept. de Matem\u00e1tica, Fac. de Matem\u00e1ticas, P. Universidad Cat\u00f3lica de Chile, Av. Vicu\u00f1a Mackenna 4860, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herrero", 
            "givenName": "Sebasti\u00e1n Daniel", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02830874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002910991", 
              "https://doi.org/10.1007/bf02830874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02830874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002910991", 
              "https://doi.org/10.1007/bf02830874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17476939608814951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007751532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02571414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021879432", 
              "https://doi.org/10.1007/bf02571414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02571414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021879432", 
              "https://doi.org/10.1007/bf02571414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1047-2797(97)00113-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022806184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02572350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023711175", 
              "https://doi.org/10.1007/bf02572350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02572350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023711175", 
              "https://doi.org/10.1007/bf02572350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01436180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043838697", 
              "https://doi.org/10.1007/bf01436180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01436180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043838697", 
              "https://doi.org/10.1007/bf01436180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1028989013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064975046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3792/pjaa.74.117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071432284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/gsm/017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098740272"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "Given a fixed modular form of level 1 we define a family of linear operators between spaces of cusp forms by use of the Rankin\u2013Cohen brackets and we compute the adjoint maps of such family with respect to the usual Petersson inner product. This is done in terms of the effect on the Fourier development of cusp forms. This is a generalization of a result due to W. Kohnen. As an application we prove certain relations among Fourier coefficients of cusp forms.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11139-013-9536-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136382", 
            "issn": [
              "1382-4090", 
              "1572-9303"
            ], 
            "name": "The Ramanujan Journal", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "name": "The adjoint of some linear maps constructed with the Rankin\u2013Cohen brackets", 
        "pagination": "529-536", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "321b419f19f0bf7a42aa2f4fb7597be61de17d31151d443e27103b08bc1fa20e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11139-013-9536-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010517609"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11139-013-9536-5", 
          "https://app.dimensions.ai/details/publication/pub.1010517609"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000520.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11139-013-9536-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9536-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9536-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9536-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9536-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11139-013-9536-5 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author Nd0157fac4abf4803be79ac8a2cee39f6
    4 schema:citation sg:pub.10.1007/bf01436180
    5 sg:pub.10.1007/bf02571414
    6 sg:pub.10.1007/bf02572350
    7 sg:pub.10.1007/bf02830874
    8 https://doi.org/10.1016/s1047-2797(97)00113-0
    9 https://doi.org/10.1080/17476939608814951
    10 https://doi.org/10.1090/gsm/017
    11 https://doi.org/10.1307/mmj/1028989013
    12 https://doi.org/10.3792/pjaa.74.117
    13 schema:datePublished 2015-04
    14 schema:datePublishedReg 2015-04-01
    15 schema:description Given a fixed modular form of level 1 we define a family of linear operators between spaces of cusp forms by use of the Rankin–Cohen brackets and we compute the adjoint maps of such family with respect to the usual Petersson inner product. This is done in terms of the effect on the Fourier development of cusp forms. This is a generalization of a result due to W. Kohnen. As an application we prove certain relations among Fourier coefficients of cusp forms.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N65ff0f26c0f94195ae52f333d95dbdcb
    20 N66e2555be29c42bb81cac8fbf8f22d72
    21 sg:journal.1136382
    22 schema:name The adjoint of some linear maps constructed with the Rankin–Cohen brackets
    23 schema:pagination 529-536
    24 schema:productId N4854a490532c46ab877a79d91eae3583
    25 N88c71e29003643acae646e89d09bf035
    26 Nef8e2cf25b1b4196829a929d80875418
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517609
    28 https://doi.org/10.1007/s11139-013-9536-5
    29 schema:sdDatePublished 2019-04-11T01:09
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N4264f6cdbb544bc5a63b194a9b664165
    32 schema:url http://link.springer.com/10.1007%2Fs11139-013-9536-5
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N2ba674ebf9a84d77b64d1715cc308507 schema:affiliation https://www.grid.ac/institutes/grid.7870.8
    37 schema:familyName Herrero
    38 schema:givenName Sebastián Daniel
    39 rdf:type schema:Person
    40 N4264f6cdbb544bc5a63b194a9b664165 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N4854a490532c46ab877a79d91eae3583 schema:name doi
    43 schema:value 10.1007/s11139-013-9536-5
    44 rdf:type schema:PropertyValue
    45 N65ff0f26c0f94195ae52f333d95dbdcb schema:issueNumber 3
    46 rdf:type schema:PublicationIssue
    47 N66e2555be29c42bb81cac8fbf8f22d72 schema:volumeNumber 36
    48 rdf:type schema:PublicationVolume
    49 N88c71e29003643acae646e89d09bf035 schema:name dimensions_id
    50 schema:value pub.1010517609
    51 rdf:type schema:PropertyValue
    52 Nd0157fac4abf4803be79ac8a2cee39f6 rdf:first N2ba674ebf9a84d77b64d1715cc308507
    53 rdf:rest rdf:nil
    54 Nef8e2cf25b1b4196829a929d80875418 schema:name readcube_id
    55 schema:value 321b419f19f0bf7a42aa2f4fb7597be61de17d31151d443e27103b08bc1fa20e
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Biological Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Biochemistry and Cell Biology
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1136382 schema:issn 1382-4090
    64 1572-9303
    65 schema:name The Ramanujan Journal
    66 rdf:type schema:Periodical
    67 sg:pub.10.1007/bf01436180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043838697
    68 https://doi.org/10.1007/bf01436180
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf02571414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879432
    71 https://doi.org/10.1007/bf02571414
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf02572350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023711175
    74 https://doi.org/10.1007/bf02572350
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf02830874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002910991
    77 https://doi.org/10.1007/bf02830874
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/s1047-2797(97)00113-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022806184
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1080/17476939608814951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007751532
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1090/gsm/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740272
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1307/mmj/1028989013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064975046
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.3792/pjaa.74.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071432284
    88 rdf:type schema:CreativeWork
    89 https://www.grid.ac/institutes/grid.7870.8 schema:alternateName Pontifical Catholic University of Chile
    90 schema:name Dept. de Matemática, Fac. de Matemáticas, P. Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...