Nonvanishing of Rankin–Selberg L-functions for Hilbert modular forms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-06

AUTHORS

Sheng-Chi Liu, Riad Masri

ABSTRACT

Let F be a totally real number field of degree n over with ring of integers and narrow class number one. Let S2k(Γ) be the vector space of cuspidal Hilbert modular forms of parallel weight 2k for , and let B2k be an orthogonal Hecke eigenbasis for this space. For any fixed Hecke eigenform f∈S2k(Γ) and any ε>0, we prove that where L(f×g,s) is the Rankin–Selberg L–function of f and g. More... »

PAGES

227-236

References to SciGraph publications

  • 2012-06. Period Integrals and Rankin–Selberg L-functions on GL(n) in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2006. Hilbert modular forms and the Ramanujan conjecture in NONCOMMUTATIVE GEOMETRY AND NUMBER THEORY
  • 2003-03. Poincaré Series and Hilbert Modular Forms in THE RAMANUJAN JOURNAL
  • Journal

    TITLE

    The Ramanujan Journal

    ISSUE

    2

    VOLUME

    34

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11139-013-9476-0

    DOI

    http://dx.doi.org/10.1007/s11139-013-9476-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005493263


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Texas A&M University", 
              "id": "https://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Mathematics, Texas A&M University, 77843-3368, College Station, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Sheng-Chi", 
            "id": "sg:person.012462437243.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462437243.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas A&M University", 
              "id": "https://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Mathematics, Texas A&M University, 77843-3368, College Station, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Masri", 
            "givenName": "Riad", 
            "id": "sg:person.0717644044.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717644044.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-8348-0352-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015891655", 
              "https://doi.org/10.1007/978-3-8348-0352-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-8348-0352-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015891655", 
              "https://doi.org/10.1007/978-3-8348-0352-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00039-012-0166-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030352919", 
              "https://doi.org/10.1007/s00039-012-0166-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026286826783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048969232", 
              "https://doi.org/10.1023/a:1026286826783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imrn/rnp148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059690513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imrn/rnp148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059690513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2118543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069769036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/022-2/19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087826830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/coll/053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098702807"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06", 
        "datePublishedReg": "2014-06-01", 
        "description": "Let F be a totally real number field of degree n over with ring of integers and narrow class number one. Let S2k(\u0393) be the vector space of cuspidal Hilbert modular forms of parallel weight 2k for , and let B2k be an orthogonal Hecke eigenbasis for this space. For any fixed Hecke eigenform f\u2208S2k(\u0393) and any \u03b5>0, we prove that where L(f\u00d7g,s) is the Rankin\u2013Selberg L\u2013function of f and g.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11139-013-9476-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136382", 
            "issn": [
              "1382-4090", 
              "1572-9303"
            ], 
            "name": "The Ramanujan Journal", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "name": "Nonvanishing of Rankin\u2013Selberg L-functions for Hilbert modular forms", 
        "pagination": "227-236", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1a2ca230d840f1bac9cd0914752d9ebda5288d435b131694bd087382db1d5b97"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11139-013-9476-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005493263"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11139-013-9476-0", 
          "https://app.dimensions.ai/details/publication/pub.1005493263"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000520.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11139-013-9476-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9476-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9476-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9476-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11139-013-9476-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11139-013-9476-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf14697672577405283c13982bfc6e1da
    4 schema:citation sg:pub.10.1007/978-3-8348-0352-8_2
    5 sg:pub.10.1007/s00039-012-0166-7
    6 sg:pub.10.1023/a:1026286826783
    7 https://doi.org/10.1090/coll/053
    8 https://doi.org/10.1093/imrn/rnp148
    9 https://doi.org/10.2307/1970201
    10 https://doi.org/10.2307/2118543
    11 https://doi.org/10.4171/022-2/19
    12 schema:datePublished 2014-06
    13 schema:datePublishedReg 2014-06-01
    14 schema:description Let F be a totally real number field of degree n over with ring of integers and narrow class number one. Let S2k(Γ) be the vector space of cuspidal Hilbert modular forms of parallel weight 2k for , and let B2k be an orthogonal Hecke eigenbasis for this space. For any fixed Hecke eigenform f∈S2k(Γ) and any ε>0, we prove that where L(f×g,s) is the Rankin–Selberg L–function of f and g.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N1a731ea4372d467091f2a6194f17e8a1
    19 N3680abba0f084525bf83338f582ecd5d
    20 sg:journal.1136382
    21 schema:name Nonvanishing of Rankin–Selberg L-functions for Hilbert modular forms
    22 schema:pagination 227-236
    23 schema:productId N40f3014074574f148a46e0f490bfe3c2
    24 Na5d13032b089412fab898ec0b9610fa2
    25 Nba5b5b3058ae48fd97c18faff9405dd7
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005493263
    27 https://doi.org/10.1007/s11139-013-9476-0
    28 schema:sdDatePublished 2019-04-10T13:19
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Ne8d02424f2294202b208a4e714830fa5
    31 schema:url http://link.springer.com/10.1007%2Fs11139-013-9476-0
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N1a731ea4372d467091f2a6194f17e8a1 schema:volumeNumber 34
    36 rdf:type schema:PublicationVolume
    37 N3680abba0f084525bf83338f582ecd5d schema:issueNumber 2
    38 rdf:type schema:PublicationIssue
    39 N3d6cc4f724244c88ae71793492855cc1 rdf:first sg:person.0717644044.71
    40 rdf:rest rdf:nil
    41 N40f3014074574f148a46e0f490bfe3c2 schema:name doi
    42 schema:value 10.1007/s11139-013-9476-0
    43 rdf:type schema:PropertyValue
    44 Na5d13032b089412fab898ec0b9610fa2 schema:name readcube_id
    45 schema:value 1a2ca230d840f1bac9cd0914752d9ebda5288d435b131694bd087382db1d5b97
    46 rdf:type schema:PropertyValue
    47 Nba5b5b3058ae48fd97c18faff9405dd7 schema:name dimensions_id
    48 schema:value pub.1005493263
    49 rdf:type schema:PropertyValue
    50 Ne8d02424f2294202b208a4e714830fa5 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nf14697672577405283c13982bfc6e1da rdf:first sg:person.012462437243.21
    53 rdf:rest N3d6cc4f724244c88ae71793492855cc1
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136382 schema:issn 1382-4090
    61 1572-9303
    62 schema:name The Ramanujan Journal
    63 rdf:type schema:Periodical
    64 sg:person.012462437243.21 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
    65 schema:familyName Liu
    66 schema:givenName Sheng-Chi
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462437243.21
    68 rdf:type schema:Person
    69 sg:person.0717644044.71 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
    70 schema:familyName Masri
    71 schema:givenName Riad
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717644044.71
    73 rdf:type schema:Person
    74 sg:pub.10.1007/978-3-8348-0352-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015891655
    75 https://doi.org/10.1007/978-3-8348-0352-8_2
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/s00039-012-0166-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030352919
    78 https://doi.org/10.1007/s00039-012-0166-7
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1023/a:1026286826783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048969232
    81 https://doi.org/10.1023/a:1026286826783
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1090/coll/053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098702807
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1093/imrn/rnp148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059690513
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.2307/1970201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675538
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.2307/2118543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069769036
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.4171/022-2/19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087826830
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
    94 schema:name Department of Mathematics, Texas A&M University, 77843-3368, College Station, TX, USA
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...