Fourier expansions of GL(2) newforms at various cusps View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02

AUTHORS

Dorian Goldfeld, Joseph Hundley, Min Lee

ABSTRACT

This paper studies the Fourier expansion of Hecke–Maass eigenforms for GL(2,ℚ) of arbitrary weight, level, and character at various cusps. Translating well known results in the theory of adelic automorphic representations into classical language, a multiplicative expression for the Fourier coefficients at any cusp is derived. In general, this expression involves Fourier coefficients at several different cusps. A sufficient condition for the existence of multiplicative relations among Fourier coefficients at a single cusp is given. It is shown that if the level is 4 times (or in some cases 8 times) an odd squarefree number then there are multiplicative relations at every cusp. We also show that a local representation of GL(2,ℚp) which is isomorphic to a local factor of a global cuspidal automorphic representation generated by the adelic lift of a newform of arbitrary weight, level N, and character χ (mod N) cannot be supercuspidal if χ is primitive. Furthermore, it is supercuspidal if and only if at every cusp (of width m and cusp parameter=0) the mpℓ Fourier coefficient, at that cusp, vanishes for all sufficiently large positive integers ℓ. In the last part of this paper, a three term identity involving the Fourier expansion at three different cusps is derived. More... »

PAGES

3-42

References to SciGraph publications

  • 1970-06. Hecke operators on Γ0(m) in MATHEMATISCHE ANNALEN
  • 1973-12. On some results of Atkin and Lehner in MATHEMATISCHE ANNALEN
  • 1975-12. Newforms and functional equations in MATHEMATISCHE ANNALEN
  • 1970. Automorphic Forms on GL (2) in NONE
  • 1983. Lectures on Modular Functions of One Complex Variable in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11139-012-9411-9

    DOI

    http://dx.doi.org/10.1007/s11139-012-9411-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018602838


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Anthropology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Studies in Human Society", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Columbia University", 
              "id": "https://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Mathematics Department, Columbia University, 1002, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goldfeld", 
            "givenName": "Dorian", 
            "id": "sg:person.01105777374.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105777374.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southern Illinois University System", 
              "id": "https://www.grid.ac/institutes/grid.411026.0", 
              "name": [
                "Department of Mathematics, Mailcode 4408, Southern Illinois University, 1245 Lincoln Drive, 62901, Carbondale, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hundley", 
            "givenName": "Joseph", 
            "id": "sg:person.011604141053.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011604141053.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Mathematics, Box 1917, Brown University, 02912, Providence, RI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Min", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01428197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015934548", 
              "https://doi.org/10.1007/bf01428197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01428197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015934548", 
              "https://doi.org/10.1007/bf01428197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0058988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032392548", 
              "https://doi.org/10.1007/bfb0058988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0058988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032392548", 
              "https://doi.org/10.1007/bfb0058988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01344466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038045861", 
              "https://doi.org/10.1007/bf01344466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040095306", 
              "https://doi.org/10.1007/bf01359701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040095306", 
              "https://doi.org/10.1007/bf01359701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1971524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2748/tmj/1178229839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070921176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/02810048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070930804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/pspum/033.1/546596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089196258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511609572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098708821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/ulect/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098715279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/gsm/017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098740272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02380-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109712105", 
              "https://doi.org/10.1007/978-3-662-02380-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02380-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109712105", 
              "https://doi.org/10.1007/978-3-662-02380-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-02", 
        "datePublishedReg": "2015-02-01", 
        "description": "This paper studies the Fourier expansion of Hecke\u2013Maass eigenforms for GL(2,\u211a) of arbitrary weight, level, and character at various cusps. Translating well known results in the theory of adelic automorphic representations into classical language, a multiplicative expression for the Fourier coefficients at any cusp is derived. In general, this expression involves Fourier coefficients at several different cusps. A sufficient condition for the existence of multiplicative relations among Fourier coefficients at a single cusp is given. It is shown that if the level is 4 times (or in some cases 8 times) an odd squarefree number then there are multiplicative relations at every cusp. We also show that a local representation of GL(2,\u211ap) which is isomorphic to a local factor of a global cuspidal automorphic representation generated by the adelic lift of a newform of arbitrary weight, level N, and character \u03c7 (mod N) cannot be supercuspidal if \u03c7 is primitive. Furthermore, it is supercuspidal if and only if at every cusp (of width m and cusp parameter=0) the mp\u2113 Fourier coefficient, at that cusp, vanishes for all sufficiently large positive integers \u2113. In the last part of this paper, a three term identity involving the Fourier expansion at three different cusps is derived.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11139-012-9411-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136382", 
            "issn": [
              "1382-4090", 
              "1572-9303"
            ], 
            "name": "The Ramanujan Journal", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "name": "Fourier expansions of GL(2) newforms at various cusps", 
        "pagination": "3-42", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "58a26f9a47cf790fe356a2596ca3e6a52b9434312fecd6f10cfae30734764d58"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11139-012-9411-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018602838"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11139-012-9411-9", 
          "https://app.dimensions.ai/details/publication/pub.1018602838"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000585.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11139-012-9411-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11139-012-9411-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11139-012-9411-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11139-012-9411-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11139-012-9411-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    120 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11139-012-9411-9 schema:about anzsrc-for:16
    2 anzsrc-for:1601
    3 schema:author N881b01b4ae9b401ea8ea071146320632
    4 schema:citation sg:pub.10.1007/978-3-662-02380-8
    5 sg:pub.10.1007/bf01344466
    6 sg:pub.10.1007/bf01359701
    7 sg:pub.10.1007/bf01428197
    8 sg:pub.10.1007/bfb0058988
    9 https://doi.org/10.1017/cbo9780511609572
    10 https://doi.org/10.1090/gsm/017
    11 https://doi.org/10.1090/pspum/033.1/546596
    12 https://doi.org/10.1090/ulect/009
    13 https://doi.org/10.2307/1971524
    14 https://doi.org/10.2748/tmj/1178229839
    15 https://doi.org/10.2969/jmsj/02810048
    16 schema:datePublished 2015-02
    17 schema:datePublishedReg 2015-02-01
    18 schema:description This paper studies the Fourier expansion of Hecke–Maass eigenforms for GL(2,ℚ) of arbitrary weight, level, and character at various cusps. Translating well known results in the theory of adelic automorphic representations into classical language, a multiplicative expression for the Fourier coefficients at any cusp is derived. In general, this expression involves Fourier coefficients at several different cusps. A sufficient condition for the existence of multiplicative relations among Fourier coefficients at a single cusp is given. It is shown that if the level is 4 times (or in some cases 8 times) an odd squarefree number then there are multiplicative relations at every cusp. We also show that a local representation of GL(2,ℚp) which is isomorphic to a local factor of a global cuspidal automorphic representation generated by the adelic lift of a newform of arbitrary weight, level N, and character χ (mod N) cannot be supercuspidal if χ is primitive. Furthermore, it is supercuspidal if and only if at every cusp (of width m and cusp parameter=0) the mpℓ Fourier coefficient, at that cusp, vanishes for all sufficiently large positive integers ℓ. In the last part of this paper, a three term identity involving the Fourier expansion at three different cusps is derived.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N0aa0454e613f4124920b8389a891843a
    23 N4963c6d083124e60888752d1d83e0d50
    24 sg:journal.1136382
    25 schema:name Fourier expansions of GL(2) newforms at various cusps
    26 schema:pagination 3-42
    27 schema:productId N71123e1d6155420ca282cdcbe237ab09
    28 N891714caeb6346f5b1a643d37dc87751
    29 Na842da62b4f243ba82a70432811aeefa
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018602838
    31 https://doi.org/10.1007/s11139-012-9411-9
    32 schema:sdDatePublished 2019-04-10T20:08
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nb8ac70f18b234a0485c089365eab44a5
    35 schema:url http://link.springer.com/10.1007%2Fs11139-012-9411-9
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N0aa0454e613f4124920b8389a891843a schema:volumeNumber 36
    40 rdf:type schema:PublicationVolume
    41 N31e68c3b141a4fce845b79a55b9e2aa7 schema:name Department of Mathematics, Box 1917, Brown University, 02912, Providence, RI, USA
    42 rdf:type schema:Organization
    43 N4963c6d083124e60888752d1d83e0d50 schema:issueNumber 1-2
    44 rdf:type schema:PublicationIssue
    45 N71123e1d6155420ca282cdcbe237ab09 schema:name readcube_id
    46 schema:value 58a26f9a47cf790fe356a2596ca3e6a52b9434312fecd6f10cfae30734764d58
    47 rdf:type schema:PropertyValue
    48 N881b01b4ae9b401ea8ea071146320632 rdf:first sg:person.01105777374.23
    49 rdf:rest N980fb4c68c4844e89a447138daf4b1db
    50 N891714caeb6346f5b1a643d37dc87751 schema:name doi
    51 schema:value 10.1007/s11139-012-9411-9
    52 rdf:type schema:PropertyValue
    53 N980fb4c68c4844e89a447138daf4b1db rdf:first sg:person.011604141053.98
    54 rdf:rest Nd0e122719df8462da5057e6d236811e1
    55 Na842da62b4f243ba82a70432811aeefa schema:name dimensions_id
    56 schema:value pub.1018602838
    57 rdf:type schema:PropertyValue
    58 Nb8ac70f18b234a0485c089365eab44a5 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Nd0e122719df8462da5057e6d236811e1 rdf:first Nd5847854e1b94399aee3fc8b55f58da1
    61 rdf:rest rdf:nil
    62 Nd5847854e1b94399aee3fc8b55f58da1 schema:affiliation N31e68c3b141a4fce845b79a55b9e2aa7
    63 schema:familyName Lee
    64 schema:givenName Min
    65 rdf:type schema:Person
    66 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Studies in Human Society
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:1601 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Anthropology
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1136382 schema:issn 1382-4090
    73 1572-9303
    74 schema:name The Ramanujan Journal
    75 rdf:type schema:Periodical
    76 sg:person.01105777374.23 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
    77 schema:familyName Goldfeld
    78 schema:givenName Dorian
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105777374.23
    80 rdf:type schema:Person
    81 sg:person.011604141053.98 schema:affiliation https://www.grid.ac/institutes/grid.411026.0
    82 schema:familyName Hundley
    83 schema:givenName Joseph
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011604141053.98
    85 rdf:type schema:Person
    86 sg:pub.10.1007/978-3-662-02380-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109712105
    87 https://doi.org/10.1007/978-3-662-02380-8
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf01344466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038045861
    90 https://doi.org/10.1007/bf01344466
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01359701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040095306
    93 https://doi.org/10.1007/bf01359701
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf01428197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015934548
    96 https://doi.org/10.1007/bf01428197
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bfb0058988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032392548
    99 https://doi.org/10.1007/bfb0058988
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1017/cbo9780511609572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708821
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1090/gsm/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740272
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1090/pspum/033.1/546596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089196258
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1090/ulect/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098715279
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.2307/1971524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676783
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.2748/tmj/1178229839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070921176
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.2969/jmsj/02810048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070930804
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
    116 schema:name Mathematics Department, Columbia University, 1002, New York, NY, USA
    117 rdf:type schema:Organization
    118 https://www.grid.ac/institutes/grid.411026.0 schema:alternateName Southern Illinois University System
    119 schema:name Department of Mathematics, Mailcode 4408, Southern Illinois University, 1245 Lincoln Drive, 62901, Carbondale, IL, USA
    120 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...