An elliptic hypergeometric integral with W(F4) symmetry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05

AUTHORS

Fokko J. van de Bult

ABSTRACT

In this article we give a new transformation between elliptic hypergeometric beta integrals, which gives rise to a Weyl group symmetry of type F4. The transformation is a generalization of a series transformation discovered by Langer, Schlosser, and Warnaar (SIGMA 5:055, 2009). Moreover we consider various limits of this transformation to basic hypergeometric functions obtained by letting p tend to 0. More... »

PAGES

1-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11139-010-9273-y

DOI

http://dx.doi.org/10.1007/s11139-010-9273-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024993654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "California Institute of Technology, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van\u00a0de Bult", 
        "givenName": "Fokko J.", 
        "id": "sg:person.016226242341.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226242341.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-4122-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010236413", 
          "https://doi.org/10.1007/978-1-4612-4122-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4122-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010236413", 
          "https://doi.org/10.1007/978-1-4612-4122-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s1061-0022-04-00839-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021829535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2010)032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025314613", 
          "https://doi.org/10.1007/jhep03(2010)032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2010)032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025314613", 
          "https://doi.org/10.1007/jhep03(2010)032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2001v056n01abeh000374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3842/sigma.2009.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071451930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3842/sigma.2009.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071451934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098712460"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05", 
    "datePublishedReg": "2011-05-01", 
    "description": "In this article we give a new transformation between elliptic hypergeometric beta integrals, which gives rise to a Weyl group symmetry of type F4. The transformation is a generalization of a series transformation discovered by Langer, Schlosser, and Warnaar (SIGMA 5:055, 2009). Moreover we consider various limits of this transformation to basic hypergeometric functions obtained by letting p tend to 0.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11139-010-9273-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136382", 
        "issn": [
          "1382-4090", 
          "1572-9303"
        ], 
        "name": "The Ramanujan Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "An elliptic hypergeometric integral with W(F4) symmetry", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "771186aeeadd0bc6288d0e66e47a47672cc8e7d104004e1f965bbba314431be6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11139-010-9273-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024993654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11139-010-9273-y", 
      "https://app.dimensions.ai/details/publication/pub.1024993654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11139-010-9273-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11139-010-9273-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11139-010-9273-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11139-010-9273-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11139-010-9273-y'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11139-010-9273-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8efaba6b8f6f4ec7996127455033b857
4 schema:citation sg:pub.10.1007/978-1-4612-4122-5_9
5 sg:pub.10.1007/jhep03(2010)032
6 https://doi.org/10.1017/cbo9780511623646
7 https://doi.org/10.1070/rm2001v056n01abeh000374
8 https://doi.org/10.1090/s1061-0022-04-00839-8
9 https://doi.org/10.3842/sigma.2009.055
10 https://doi.org/10.3842/sigma.2009.059
11 https://doi.org/10.4007/annals.2010.171.169
12 schema:datePublished 2011-05
13 schema:datePublishedReg 2011-05-01
14 schema:description In this article we give a new transformation between elliptic hypergeometric beta integrals, which gives rise to a Weyl group symmetry of type F4. The transformation is a generalization of a series transformation discovered by Langer, Schlosser, and Warnaar (SIGMA 5:055, 2009). Moreover we consider various limits of this transformation to basic hypergeometric functions obtained by letting p tend to 0.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N022578634ff348ddb9d72ccf4790b5b1
19 Nc68f9dfbf1864c31b933297be189f761
20 sg:journal.1136382
21 schema:name An elliptic hypergeometric integral with W(F4) symmetry
22 schema:pagination 1-20
23 schema:productId N6c1154963aa94b66b03bc619fed255bf
24 N93e9d95c5236407f83a370ed1408933a
25 Naa6d1cacb7be4367bb7d9503d5831e03
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024993654
27 https://doi.org/10.1007/s11139-010-9273-y
28 schema:sdDatePublished 2019-04-10T14:12
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N5a9a11d16add4ffda3a2f6cc96ead556
31 schema:url http://link.springer.com/10.1007%2Fs11139-010-9273-y
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N022578634ff348ddb9d72ccf4790b5b1 schema:issueNumber 1
36 rdf:type schema:PublicationIssue
37 N5a9a11d16add4ffda3a2f6cc96ead556 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N6c1154963aa94b66b03bc619fed255bf schema:name dimensions_id
40 schema:value pub.1024993654
41 rdf:type schema:PropertyValue
42 N8efaba6b8f6f4ec7996127455033b857 rdf:first sg:person.016226242341.65
43 rdf:rest rdf:nil
44 N93e9d95c5236407f83a370ed1408933a schema:name doi
45 schema:value 10.1007/s11139-010-9273-y
46 rdf:type schema:PropertyValue
47 Naa6d1cacb7be4367bb7d9503d5831e03 schema:name readcube_id
48 schema:value 771186aeeadd0bc6288d0e66e47a47672cc8e7d104004e1f965bbba314431be6
49 rdf:type schema:PropertyValue
50 Nc68f9dfbf1864c31b933297be189f761 schema:volumeNumber 25
51 rdf:type schema:PublicationVolume
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136382 schema:issn 1382-4090
59 1572-9303
60 schema:name The Ramanujan Journal
61 rdf:type schema:Periodical
62 sg:person.016226242341.65 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
63 schema:familyName van de Bult
64 schema:givenName Fokko J.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226242341.65
66 rdf:type schema:Person
67 sg:pub.10.1007/978-1-4612-4122-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010236413
68 https://doi.org/10.1007/978-1-4612-4122-5_9
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
71 https://doi.org/10.1007/jhep03(2010)032
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1017/cbo9780511623646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098712460
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1070/rm2001v056n01abeh000374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197382
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1090/s1061-0022-04-00839-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021829535
78 rdf:type schema:CreativeWork
79 https://doi.org/10.3842/sigma.2009.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071451930
80 rdf:type schema:CreativeWork
81 https://doi.org/10.3842/sigma.2009.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071451934
82 rdf:type schema:CreativeWork
83 https://doi.org/10.4007/annals.2010.171.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867206
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
86 schema:name California Institute of Technology, Pasadena, CA, USA
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...