Using the EORTC-QLQ-C30 in clinical practice for patient management: identifying scores requiring a clinician’s attention View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Claire F. Snyder, Amanda L. Blackford, Toru Okuyama, Tatsuo Akechi, Hiroko Yamashita, Tatsuya Toyama, Michael A. Carducci, Albert W. Wu

ABSTRACT

PURPOSE: Patient-reported outcomes (PROs) are used increasingly for individual patient management. Identifying which PRO scores require a clinician's attention is an ongoing challenge. Previous research used a needs assessment to identify EORTC-QLQ-C30 cutoff scores representing unmet needs. This analysis attempted to replicate the previous findings in a new and larger sample. METHODS: This analysis used data from 408 Japanese ambulatory breast cancer patients who completed the QLQ-C30 and Supportive Care Needs Survey-Short Form-34 (SCNS-SF34). Applying the methods used previously, SCNS-SF34 item/domain scores were dichotomized as no versus some unmet need. We calculated area under the receiver operating characteristic curve (AUC) to evaluate QLQ-C30 scores' ability to discriminate between patients with no versus some unmet need based on SCNS-SF34 items/domains. For QLQ-C30 domains with AUC ≥ 0.70, we calculated the sensitivity, specificity, and predictive value of various cutoffs for identifying unmet needs. We hypothesized that compared to our original analysis, (1) the same six QLQ-C30 domains would have AUC ≥ 0.70, (2) the same SCNS-SF34 items would be best discriminated by QLQ-C30 scores, and (3) the sensitivity and specificity of our original cutoff scores would be supported. RESULTS: The findings from our original analysis were supported. The same six domains with AUC ≥ 0.70 in the original analysis had AUC ≥ 0.70 in this new sample, and the same SCNS-SF34 item was best discriminated by QLQ-C30 scores. Cutoff scores were identified with sensitivity ≥0.84 and specificity ≥0.54. CONCLUSION: Given these findings' concordance with our previous analysis, these QLQ-C30 cutoffs could be implemented in clinical practice and their usefulness evaluated. More... »

PAGES

2685-2691

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11136-013-0387-8

DOI

http://dx.doi.org/10.1007/s11136-013-0387-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033150917

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23532341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Needs Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Care Team", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Outcome Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality of Life", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins Medicine", 
          "id": "https://www.grid.ac/institutes/grid.469474.c", 
          "name": [
            "Division of General Internal Medicine, Johns Hopkins School of Medicine, 624 N. Broadway, Room 657, 21205, Baltimore, MD, USA", 
            "Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA", 
            "Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Snyder", 
        "givenName": "Claire F.", 
        "id": "sg:person.01052333023.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052333023.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins Medicine", 
          "id": "https://www.grid.ac/institutes/grid.469474.c", 
          "name": [
            "Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blackford", 
        "givenName": "Amanda L.", 
        "id": "sg:person.01003562505.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya City University", 
          "id": "https://www.grid.ac/institutes/grid.260433.0", 
          "name": [
            "Division of Palliative Care and Psycho-oncology, Nagoya City University Hospital, Nagoya, Japan", 
            "Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okuyama", 
        "givenName": "Toru", 
        "id": "sg:person.0767427674.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767427674.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya City University", 
          "id": "https://www.grid.ac/institutes/grid.260433.0", 
          "name": [
            "Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akechi", 
        "givenName": "Tatsuo", 
        "id": "sg:person.01162063210.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162063210.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hokkaido University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412167.7", 
          "name": [
            "Breast and Endocrine Surgery, Hokkaido University Hospital, Hokkaido, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamashita", 
        "givenName": "Hiroko", 
        "id": "sg:person.01174306260.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174306260.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya City University", 
          "id": "https://www.grid.ac/institutes/grid.260433.0", 
          "name": [
            "Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toyama", 
        "givenName": "Tatsuya", 
        "id": "sg:person.0675464346.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675464346.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins Medicine", 
          "id": "https://www.grid.ac/institutes/grid.469474.c", 
          "name": [
            "Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carducci", 
        "givenName": "Michael A.", 
        "id": "sg:person.01266317743.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266317743.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Division of General Internal Medicine, Johns Hopkins School of Medicine, 624 N. Broadway, Room 657, 21205, Baltimore, MD, USA", 
            "Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Albert W.", 
        "id": "sg:person.011237117272.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011237117272.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11136-008-9430-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000691737", 
          "https://doi.org/10.1007/s11136-008-9430-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(20000101)88:1<217::aid-cncr29>3.0.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002860540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6600001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009936088", 
          "https://doi.org/10.1038/sj.bjc.6600001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6600001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009936088", 
          "https://doi.org/10.1038/sj.bjc.6600001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-009-9497-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010605292", 
          "https://doi.org/10.1007/s11136-009-9497-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-009-9497-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010605292", 
          "https://doi.org/10.1007/s11136-009-9497-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2753.1999.00209.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015409575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.06.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015676595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.33.2080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017777167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(97)00395-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020429064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pon.3087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022240845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2753.2006.00650.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022614445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-010-9599-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022856075", 
          "https://doi.org/10.1007/s11136-010-9599-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-010-9599-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022856075", 
          "https://doi.org/10.1007/s11136-010-9599-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.288.23.3027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023557649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pec.2005.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027408966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pon.1482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030131499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pon.1482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030131499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-010-9636-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030697960", 
          "https://doi.org/10.1007/s11136-010-9636-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-010-9636-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030697960", 
          "https://doi.org/10.1007/s11136-010-9636-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.29.8315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043428806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(20000101)88:1<226::aid-cncr30>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048266659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.30.3909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049610865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)61400-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051180184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.suponc.2012.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054750666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/85.5.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059818446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2001.19.21.4117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074948896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491887", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491887", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "PURPOSE: Patient-reported outcomes (PROs) are used increasingly for individual patient management. Identifying which PRO scores require a clinician's attention is an ongoing challenge. Previous research used a needs assessment to identify EORTC-QLQ-C30 cutoff scores representing unmet needs. This analysis attempted to replicate the previous findings in a new and larger sample.\nMETHODS: This analysis used data from 408 Japanese ambulatory breast cancer patients who completed the QLQ-C30 and Supportive Care Needs Survey-Short Form-34 (SCNS-SF34). Applying the methods used previously, SCNS-SF34 item/domain scores were dichotomized as no versus some unmet need. We calculated area under the receiver operating characteristic curve (AUC) to evaluate QLQ-C30 scores' ability to discriminate between patients with no versus some unmet need based on SCNS-SF34 items/domains. For QLQ-C30 domains with AUC\u00a0\u2265\u00a00.70, we calculated the sensitivity, specificity, and predictive value of various cutoffs for identifying unmet needs. We hypothesized that compared to our original analysis, (1) the same six QLQ-C30 domains would have AUC\u00a0\u2265\u00a00.70, (2) the same SCNS-SF34 items would be best discriminated by QLQ-C30 scores, and (3) the sensitivity and specificity of our original cutoff scores would be supported.\nRESULTS: The findings from our original analysis were supported. The same six domains with AUC\u00a0\u2265\u00a00.70 in the original analysis had AUC\u00a0\u2265\u00a00.70 in this new sample, and the same SCNS-SF34 item was best discriminated by QLQ-C30 scores. Cutoff scores were identified with sensitivity \u22650.84 and specificity \u22650.54.\nCONCLUSION: Given these findings' concordance with our previous analysis, these QLQ-C30 cutoffs could be implemented in clinical practice and their usefulness evaluated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11136-013-0387-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438791", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1102620", 
        "issn": [
          "0962-9343", 
          "1573-2649"
        ], 
        "name": "Quality of Life Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Using the EORTC-QLQ-C30 in clinical practice for patient management: identifying scores requiring a clinician\u2019s attention", 
    "pagination": "2685-2691", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ded1804cd94ac388d58c12e62bd276f88b8863ad00dc800de9abdad8d3cf8b1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23532341"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9210257"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11136-013-0387-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033150917"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11136-013-0387-8", 
      "https://app.dimensions.ai/details/publication/pub.1033150917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000589.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11136-013-0387-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11136-013-0387-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11136-013-0387-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11136-013-0387-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11136-013-0387-8'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      69 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11136-013-0387-8 schema:about N086aced26b2d4ef3bf71db916ff27cec
2 N16f5328fd34341b38700c6f6c8708e82
3 N31a3c14a7b60426e88c330b519b6e009
4 N3dc1b1c7ed854e7a98b16cf0249d6ba0
5 N60b5c592f7af4fdaa2db9e12ab5b414b
6 N6cdd4efe79b14ba6a657a43710f0864c
7 N957fe6410d554ad8b95d6d47a22e74c7
8 N99d9bd8b814746d1b56440ad1a07d639
9 Nacb210e77c8340b48365992765037ca3
10 Naea3342c273846d7b39f06f7ff0eb011
11 Nb652f4c6cf55443fb5087ba8cdd24fcf
12 Nb909392af7584578a9f6557f204103ec
13 Ndcf2a1cebffc4d049a5883b06cd7772d
14 Ne2905a4316dd448f8bb01425c17ed8ab
15 Ned45ec905f724b4a8734df906c77eccf
16 Nef5d1a58a697445a853d31e276629e44
17 Nfe6a9dcab11f46b6ae8489a3ffeb60e8
18 anzsrc-for:11
19 anzsrc-for:1117
20 schema:author N736f01618f124f0fb69f9a278fedf56f
21 schema:citation sg:pub.10.1007/s11136-008-9430-6
22 sg:pub.10.1007/s11136-009-9497-8
23 sg:pub.10.1007/s11136-010-9599-3
24 sg:pub.10.1007/s11136-010-9636-2
25 sg:pub.10.1038/sj.bjc.6600001
26 https://app.dimensions.ai/details/publication/pub.1109491887
27 https://doi.org/10.1001/jama.288.23.3027
28 https://doi.org/10.1002/(sici)1097-0142(20000101)88:1<217::aid-cncr29>3.0.co;2-y
29 https://doi.org/10.1002/(sici)1097-0142(20000101)88:1<226::aid-cncr30>3.0.co;2-p
30 https://doi.org/10.1002/pon.1482
31 https://doi.org/10.1002/pon.3087
32 https://doi.org/10.1016/j.pec.2005.10.005
33 https://doi.org/10.1016/j.suponc.2012.02.002
34 https://doi.org/10.1016/s0140-6736(09)61400-8
35 https://doi.org/10.1016/s0959-8049(97)00395-x
36 https://doi.org/10.1046/j.1365-2753.1999.00209.x
37 https://doi.org/10.1093/jnci/85.5.365
38 https://doi.org/10.1111/j.1365-2753.2006.00650.x
39 https://doi.org/10.1200/jco.2001.19.21.4117
40 https://doi.org/10.1200/jco.2004.06.078
41 https://doi.org/10.1200/jco.2010.29.8315
42 https://doi.org/10.1200/jco.2010.30.3909
43 https://doi.org/10.1200/jco.2010.33.2080
44 schema:datePublished 2013-12
45 schema:datePublishedReg 2013-12-01
46 schema:description PURPOSE: Patient-reported outcomes (PROs) are used increasingly for individual patient management. Identifying which PRO scores require a clinician's attention is an ongoing challenge. Previous research used a needs assessment to identify EORTC-QLQ-C30 cutoff scores representing unmet needs. This analysis attempted to replicate the previous findings in a new and larger sample. METHODS: This analysis used data from 408 Japanese ambulatory breast cancer patients who completed the QLQ-C30 and Supportive Care Needs Survey-Short Form-34 (SCNS-SF34). Applying the methods used previously, SCNS-SF34 item/domain scores were dichotomized as no versus some unmet need. We calculated area under the receiver operating characteristic curve (AUC) to evaluate QLQ-C30 scores' ability to discriminate between patients with no versus some unmet need based on SCNS-SF34 items/domains. For QLQ-C30 domains with AUC ≥ 0.70, we calculated the sensitivity, specificity, and predictive value of various cutoffs for identifying unmet needs. We hypothesized that compared to our original analysis, (1) the same six QLQ-C30 domains would have AUC ≥ 0.70, (2) the same SCNS-SF34 items would be best discriminated by QLQ-C30 scores, and (3) the sensitivity and specificity of our original cutoff scores would be supported. RESULTS: The findings from our original analysis were supported. The same six domains with AUC ≥ 0.70 in the original analysis had AUC ≥ 0.70 in this new sample, and the same SCNS-SF34 item was best discriminated by QLQ-C30 scores. Cutoff scores were identified with sensitivity ≥0.84 and specificity ≥0.54. CONCLUSION: Given these findings' concordance with our previous analysis, these QLQ-C30 cutoffs could be implemented in clinical practice and their usefulness evaluated.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf Na29d51460e6b4e2891ded6c839211d61
51 Nf8e98b7fbe874263a8db25c53dfec3f9
52 sg:journal.1102620
53 schema:name Using the EORTC-QLQ-C30 in clinical practice for patient management: identifying scores requiring a clinician’s attention
54 schema:pagination 2685-2691
55 schema:productId N1dec4d855aee45a8befde7965e9ae63e
56 N470dc733e1814e4796fb99eaff7d4b51
57 Na80a2749976b46e380a8ee6a82d5197c
58 Nb4220c6ce79e447e9cd6fefe2d95de28
59 Nbfaccf78196d4e74994311e789401c5d
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033150917
61 https://doi.org/10.1007/s11136-013-0387-8
62 schema:sdDatePublished 2019-04-10T22:45
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nd4b7f71900d1433c96db082bfe6dfea6
65 schema:url http://link.springer.com/10.1007%2Fs11136-013-0387-8
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N086aced26b2d4ef3bf71db916ff27cec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Middle Aged
71 rdf:type schema:DefinedTerm
72 N16f5328fd34341b38700c6f6c8708e82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Reproducibility of Results
74 rdf:type schema:DefinedTerm
75 N1b6701b58ba44548adad8d8b9ad3c169 rdf:first sg:person.011237117272.29
76 rdf:rest rdf:nil
77 N1dec4d855aee45a8befde7965e9ae63e schema:name dimensions_id
78 schema:value pub.1033150917
79 rdf:type schema:PropertyValue
80 N22b66959dbae42cab7eabdd9fb061e72 rdf:first sg:person.01003562505.03
81 rdf:rest N521aaad8ed294213aec120f33705b7e5
82 N31a3c14a7b60426e88c330b519b6e009 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Psychometrics
84 rdf:type schema:DefinedTerm
85 N3499ed429867432ea8432ca3ad75fc07 rdf:first sg:person.01174306260.37
86 rdf:rest N7d2632aff8da48c4a9b6f09dc71fb365
87 N3981d3546e674aa8bcf76c3983a70558 rdf:first sg:person.01266317743.88
88 rdf:rest N1b6701b58ba44548adad8d8b9ad3c169
89 N3dc1b1c7ed854e7a98b16cf0249d6ba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Quality of Life
91 rdf:type schema:DefinedTerm
92 N43be2b9962f344d1a561716b87e6c644 rdf:first sg:person.01162063210.25
93 rdf:rest N3499ed429867432ea8432ca3ad75fc07
94 N470dc733e1814e4796fb99eaff7d4b51 schema:name pubmed_id
95 schema:value 23532341
96 rdf:type schema:PropertyValue
97 N521aaad8ed294213aec120f33705b7e5 rdf:first sg:person.0767427674.57
98 rdf:rest N43be2b9962f344d1a561716b87e6c644
99 N60b5c592f7af4fdaa2db9e12ab5b414b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Male
101 rdf:type schema:DefinedTerm
102 N6cdd4efe79b14ba6a657a43710f0864c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Patient Care Team
104 rdf:type schema:DefinedTerm
105 N736f01618f124f0fb69f9a278fedf56f rdf:first sg:person.01052333023.09
106 rdf:rest N22b66959dbae42cab7eabdd9fb061e72
107 N7d2632aff8da48c4a9b6f09dc71fb365 rdf:first sg:person.0675464346.56
108 rdf:rest N3981d3546e674aa8bcf76c3983a70558
109 N957fe6410d554ad8b95d6d47a22e74c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Surveys and Questionnaires
111 rdf:type schema:DefinedTerm
112 N99d9bd8b814746d1b56440ad1a07d639 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Patient Outcome Assessment
114 rdf:type schema:DefinedTerm
115 Na29d51460e6b4e2891ded6c839211d61 schema:volumeNumber 22
116 rdf:type schema:PublicationVolume
117 Na80a2749976b46e380a8ee6a82d5197c schema:name readcube_id
118 schema:value 9ded1804cd94ac388d58c12e62bd276f88b8863ad00dc800de9abdad8d3cf8b1
119 rdf:type schema:PropertyValue
120 Nacb210e77c8340b48365992765037ca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Female
122 rdf:type schema:DefinedTerm
123 Naea3342c273846d7b39f06f7ff0eb011 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Aged
125 rdf:type schema:DefinedTerm
126 Nb4220c6ce79e447e9cd6fefe2d95de28 schema:name doi
127 schema:value 10.1007/s11136-013-0387-8
128 rdf:type schema:PropertyValue
129 Nb652f4c6cf55443fb5087ba8cdd24fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Predictive Value of Tests
131 rdf:type schema:DefinedTerm
132 Nb909392af7584578a9f6557f204103ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Breast Neoplasms
134 rdf:type schema:DefinedTerm
135 Nbfaccf78196d4e74994311e789401c5d schema:name nlm_unique_id
136 schema:value 9210257
137 rdf:type schema:PropertyValue
138 Nd4b7f71900d1433c96db082bfe6dfea6 schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Ndcf2a1cebffc4d049a5883b06cd7772d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Patient Care
142 rdf:type schema:DefinedTerm
143 Ne2905a4316dd448f8bb01425c17ed8ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name ROC Curve
145 rdf:type schema:DefinedTerm
146 Ned45ec905f724b4a8734df906c77eccf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Needs Assessment
148 rdf:type schema:DefinedTerm
149 Nef5d1a58a697445a853d31e276629e44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Asian Continental Ancestry Group
151 rdf:type schema:DefinedTerm
152 Nf8e98b7fbe874263a8db25c53dfec3f9 schema:issueNumber 10
153 rdf:type schema:PublicationIssue
154 Nfe6a9dcab11f46b6ae8489a3ffeb60e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Humans
156 rdf:type schema:DefinedTerm
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
161 schema:name Public Health and Health Services
162 rdf:type schema:DefinedTerm
163 sg:grant.2438791 http://pending.schema.org/fundedItem sg:pub.10.1007/s11136-013-0387-8
164 rdf:type schema:MonetaryGrant
165 sg:journal.1102620 schema:issn 0962-9343
166 1573-2649
167 schema:name Quality of Life Research
168 rdf:type schema:Periodical
169 sg:person.01003562505.03 schema:affiliation https://www.grid.ac/institutes/grid.469474.c
170 schema:familyName Blackford
171 schema:givenName Amanda L.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03
173 rdf:type schema:Person
174 sg:person.01052333023.09 schema:affiliation https://www.grid.ac/institutes/grid.469474.c
175 schema:familyName Snyder
176 schema:givenName Claire F.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052333023.09
178 rdf:type schema:Person
179 sg:person.011237117272.29 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
180 schema:familyName Wu
181 schema:givenName Albert W.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011237117272.29
183 rdf:type schema:Person
184 sg:person.01162063210.25 schema:affiliation https://www.grid.ac/institutes/grid.260433.0
185 schema:familyName Akechi
186 schema:givenName Tatsuo
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162063210.25
188 rdf:type schema:Person
189 sg:person.01174306260.37 schema:affiliation https://www.grid.ac/institutes/grid.412167.7
190 schema:familyName Yamashita
191 schema:givenName Hiroko
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174306260.37
193 rdf:type schema:Person
194 sg:person.01266317743.88 schema:affiliation https://www.grid.ac/institutes/grid.469474.c
195 schema:familyName Carducci
196 schema:givenName Michael A.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266317743.88
198 rdf:type schema:Person
199 sg:person.0675464346.56 schema:affiliation https://www.grid.ac/institutes/grid.260433.0
200 schema:familyName Toyama
201 schema:givenName Tatsuya
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675464346.56
203 rdf:type schema:Person
204 sg:person.0767427674.57 schema:affiliation https://www.grid.ac/institutes/grid.260433.0
205 schema:familyName Okuyama
206 schema:givenName Toru
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767427674.57
208 rdf:type schema:Person
209 sg:pub.10.1007/s11136-008-9430-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000691737
210 https://doi.org/10.1007/s11136-008-9430-6
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s11136-009-9497-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010605292
213 https://doi.org/10.1007/s11136-009-9497-8
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s11136-010-9599-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022856075
216 https://doi.org/10.1007/s11136-010-9599-3
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s11136-010-9636-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030697960
219 https://doi.org/10.1007/s11136-010-9636-2
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/sj.bjc.6600001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009936088
222 https://doi.org/10.1038/sj.bjc.6600001
223 rdf:type schema:CreativeWork
224 https://app.dimensions.ai/details/publication/pub.1109491887 schema:CreativeWork
225 https://doi.org/10.1001/jama.288.23.3027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023557649
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1002/(sici)1097-0142(20000101)88:1<217::aid-cncr29>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002860540
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/(sici)1097-0142(20000101)88:1<226::aid-cncr30>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1048266659
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/pon.1482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030131499
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1002/pon.3087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022240845
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.pec.2005.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027408966
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.suponc.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054750666
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0140-6736(09)61400-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051180184
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/s0959-8049(97)00395-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020429064
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1046/j.1365-2753.1999.00209.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015409575
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/jnci/85.5.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059818446
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1111/j.1365-2753.2006.00650.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022614445
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1200/jco.2001.19.21.4117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074948896
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1200/jco.2004.06.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015676595
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1200/jco.2010.29.8315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043428806
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1200/jco.2010.30.3909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049610865
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1200/jco.2010.33.2080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017777167
258 rdf:type schema:CreativeWork
259 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
260 schema:name Division of General Internal Medicine, Johns Hopkins School of Medicine, 624 N. Broadway, Room 657, 21205, Baltimore, MD, USA
261 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.260433.0 schema:alternateName Nagoya City University
264 schema:name Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
265 Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
266 Division of Palliative Care and Psycho-oncology, Nagoya City University Hospital, Nagoya, Japan
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.412167.7 schema:alternateName Hokkaido University Hospital
269 schema:name Breast and Endocrine Surgery, Hokkaido University Hospital, Hokkaido, Japan
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.469474.c schema:alternateName Johns Hopkins Medicine
272 schema:name Division of General Internal Medicine, Johns Hopkins School of Medicine, 624 N. Broadway, Room 657, 21205, Baltimore, MD, USA
273 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
274 Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...