Mapping analyses to estimate EQ-5D utilities and responses based on Oxford Knee Score View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04

AUTHORS

Helen Dakin, Alastair Gray, David Murray

ABSTRACT

PURPOSE: The Oxford Knee Score (OKS) is a validated 12-item measure of knee replacement outcomes. An algorithm to estimate EQ-5D utilities from OKS would facilitate cost-utility analysis on studies analyses using OKS but not generic health state preference measures. We estimate mapping (or cross-walking) models that predict EQ-5D utilities and/or responses based on OKS. We also compare different model specifications and assess whether different datasets yield different mapping algorithms. METHODS: Models were estimated using data from the Knee Arthroplasty Trial and the UK Patient Reported Outcome Measures dataset, giving a combined estimation dataset of 134,269 questionnaires from 81,213 knee replacement patients and an internal validation dataset of 45,213 questionnaires from 27,397 patients. The best model was externally validated on registry data (10,002 observations from 4,505 patients) from the South West London Elective Orthopaedic Centre. Eight models of the relationship between OKS and EQ-5D were evaluated, including ordinary least squares, generalized linear models, two-part models, three-part models and response mapping. RESULTS: A multinomial response mapping model using OKS responses to predict EQ-5D response levels had best prediction accuracy, with two-part and three-part models also performing well. In the external validation sample, this model had a mean squared error of 0.033 and a mean absolute error of 0.129. Relative model performance, coefficients and predictions differed slightly but significantly between the two estimation datasets. CONCLUSIONS: The resulting response mapping algorithm can be used to predict EQ-5D utilities and responses from OKS responses. Response mapping appears to perform particularly well in large datasets. More... »

PAGES

683-694

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11136-012-0189-4

DOI

http://dx.doi.org/10.1007/s11136-012-0189-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012939608

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22555470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arthroplasty, Replacement, Knee", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "London", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality of Life", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sickness Impact Profile", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Public Health, Health Economics Research Centre, University of Oxford, Old Road Campus, Headington, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dakin", 
        "givenName": "Helen", 
        "id": "sg:person.01153621741.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153621741.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Public Health, Health Economics Research Centre, University of Oxford, Old Road Campus, Headington, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gray", 
        "givenName": "Alastair", 
        "id": "sg:person.01307325071.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murray", 
        "givenName": "David", 
        "id": "sg:person.012633757262.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1177/0272989x09349961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005660373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x09349961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005660373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jval.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012317208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266462306051051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015044062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266462306051051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015044062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x05284108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017030709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x05284108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017030709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x07309642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018480137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x07309642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018480137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b14117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022455101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4733.2008.00405.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023842364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1302/0301-620x.92b3.22913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025647884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-5511-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027827136", 
          "https://doi.org/10.1007/1-4020-5511-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-5511-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027827136", 
          "https://doi.org/10.1007/1-4020-5511-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/07853890109002085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031090139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arth.2010.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033417473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2011-000332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033476360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mlr.0b013e318207e9a8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035570793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mlr.0b013e318207e9a8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035570793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x9901900203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043127311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x9901900203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043127311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hec.4730040402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045405273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hec.1608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048178510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hec.1608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048178510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-009-0168-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050230614", 
          "https://doi.org/10.1007/s10198-009-0168-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-009-0168-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050230614", 
          "https://doi.org/10.1007/s10198-009-0168-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-009-0168-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050230614", 
          "https://doi.org/10.1007/s10198-009-0168-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-199711000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060223465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-199711000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060223465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-199711000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060223465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-199711000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060223465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-200006000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060223938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-200006000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060223938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-200006000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060223938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1302/0301-620x.80b1.7859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064885821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1302/0301-620x.89b8.19424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064886491"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "PURPOSE: The Oxford Knee Score (OKS) is a validated 12-item measure of knee replacement outcomes. An algorithm to estimate EQ-5D utilities from OKS would facilitate cost-utility analysis on studies analyses using OKS but not generic health state preference measures. We estimate mapping (or cross-walking) models that predict EQ-5D utilities and/or responses based on OKS. We also compare different model specifications and assess whether different datasets yield different mapping algorithms.\nMETHODS: Models were estimated using data from the Knee Arthroplasty Trial and the UK Patient Reported Outcome Measures dataset, giving a combined estimation dataset of 134,269 questionnaires from 81,213 knee replacement patients and an internal validation dataset of 45,213 questionnaires from 27,397 patients. The best model was externally validated on registry data (10,002 observations from 4,505 patients) from the South West London Elective Orthopaedic Centre. Eight models of the relationship between OKS and EQ-5D were evaluated, including ordinary least squares, generalized linear models, two-part models, three-part models and response mapping.\nRESULTS: A multinomial response mapping model using OKS responses to predict EQ-5D response levels had best prediction accuracy, with two-part and three-part models also performing well. In the external validation sample, this model had a mean squared error of 0.033 and a mean absolute error of 0.129. Relative model performance, coefficients and predictions differed slightly but significantly between the two estimation datasets.\nCONCLUSIONS: The resulting response mapping algorithm can be used to predict EQ-5D utilities and responses from OKS responses. Response mapping appears to perform particularly well in large datasets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11136-012-0189-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5147359", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1102620", 
        "issn": [
          "0962-9343", 
          "1573-2649"
        ], 
        "name": "Quality of Life Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Mapping analyses to estimate EQ-5D utilities and responses based on Oxford Knee Score", 
    "pagination": "683-694", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3da55d62d088b4b2ca3eb7031093e4149d6f80fc18ed37078b0fef639875d5e4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22555470"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9210257"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11136-012-0189-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012939608"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11136-012-0189-4", 
      "https://app.dimensions.ai/details/publication/pub.1012939608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607737/"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11136-012-0189-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11136-012-0189-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11136-012-0189-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11136-012-0189-4'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      69 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11136-012-0189-4 schema:about N0c5f9e49a73147aabaa49d69f5f56c32
2 N0f48c2b3f68a46b697318acfbb0f1983
3 N128326250173467580fa684325f1bdef
4 N1b73ff63390c4f178001995719ae4dbf
5 N238e67d0c3b346e6b4a8858001f69c02
6 N2b44458ff4474359b7870074037161af
7 N425f1f63e0b14771a496d65870a7c31f
8 N4671fd6b663d4ead8328a33144409332
9 N5cda925b38eb4ae59222d1008697c868
10 N7d6ab75e7a2d42c0b4add58d8a2b88b3
11 N96d0e3da90b047ef8c4521d99d19e044
12 Nacb33e6dc97e4023811dcb62c42fabaf
13 Nca430bf6a857417787d296b6c322afd8
14 Nd051bfa2f0a646d1ac6088638b01da40
15 Nd97550cfb0874972a302d9aa2fe2b2d0
16 Ndab04e7af26b463d87dedb6fd02ebe3a
17 Ne299330c3c89482da07e0c5e680b7b0e
18 Nf07cbae881ec48509033983b8ed2288e
19 Nf5f00e4008a945c5bab7f6da3d657ff4
20 anzsrc-for:01
21 anzsrc-for:0104
22 schema:author Ndd4d6bf9f99d43b3896bbac3cd441949
23 schema:citation sg:pub.10.1007/1-4020-5511-0
24 sg:pub.10.1007/s10198-009-0168-z
25 https://doi.org/10.1002/hec.1608
26 https://doi.org/10.1002/hec.4730040402
27 https://doi.org/10.1016/j.arth.2010.05.032
28 https://doi.org/10.1016/j.jval.2011.03.003
29 https://doi.org/10.1017/s0266462306051051
30 https://doi.org/10.1097/00005650-199711000-00002
31 https://doi.org/10.1097/00005650-200006000-00004
32 https://doi.org/10.1097/mlr.0b013e318207e9a8
33 https://doi.org/10.1111/j.1524-4733.2008.00405.x
34 https://doi.org/10.1136/bmjopen-2011-000332
35 https://doi.org/10.1177/0272989x05284108
36 https://doi.org/10.1177/0272989x07309642
37 https://doi.org/10.1177/0272989x09349961
38 https://doi.org/10.1177/0272989x9901900203
39 https://doi.org/10.1201/b14117-9
40 https://doi.org/10.1302/0301-620x.80b1.7859
41 https://doi.org/10.1302/0301-620x.89b8.19424
42 https://doi.org/10.1302/0301-620x.92b3.22913
43 https://doi.org/10.3109/07853890109002085
44 schema:datePublished 2013-04
45 schema:datePublishedReg 2013-04-01
46 schema:description PURPOSE: The Oxford Knee Score (OKS) is a validated 12-item measure of knee replacement outcomes. An algorithm to estimate EQ-5D utilities from OKS would facilitate cost-utility analysis on studies analyses using OKS but not generic health state preference measures. We estimate mapping (or cross-walking) models that predict EQ-5D utilities and/or responses based on OKS. We also compare different model specifications and assess whether different datasets yield different mapping algorithms. METHODS: Models were estimated using data from the Knee Arthroplasty Trial and the UK Patient Reported Outcome Measures dataset, giving a combined estimation dataset of 134,269 questionnaires from 81,213 knee replacement patients and an internal validation dataset of 45,213 questionnaires from 27,397 patients. The best model was externally validated on registry data (10,002 observations from 4,505 patients) from the South West London Elective Orthopaedic Centre. Eight models of the relationship between OKS and EQ-5D were evaluated, including ordinary least squares, generalized linear models, two-part models, three-part models and response mapping. RESULTS: A multinomial response mapping model using OKS responses to predict EQ-5D response levels had best prediction accuracy, with two-part and three-part models also performing well. In the external validation sample, this model had a mean squared error of 0.033 and a mean absolute error of 0.129. Relative model performance, coefficients and predictions differed slightly but significantly between the two estimation datasets. CONCLUSIONS: The resulting response mapping algorithm can be used to predict EQ-5D utilities and responses from OKS responses. Response mapping appears to perform particularly well in large datasets.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N12d0e0e3c66549ec99cd79dff5c5c818
51 N46b745d71270443d8a6ab8a80e7b7cc4
52 sg:journal.1102620
53 schema:name Mapping analyses to estimate EQ-5D utilities and responses based on Oxford Knee Score
54 schema:pagination 683-694
55 schema:productId N1205a9395bd94a0798193d272926680f
56 N3c579b39d5ca41b3bc9d96c7980c890a
57 N82a5590fd64e48b49f3f71260f9e2a76
58 N85294bf99110432ba0810e3cb6cd0394
59 N905dcfc5cb51469cb82b491ed927c5fb
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012939608
61 https://doi.org/10.1007/s11136-012-0189-4
62 schema:sdDatePublished 2019-04-11T00:22
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N2c906b5e97674e42a0826f4c53a6e4f1
65 schema:url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607737/
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0c5f9e49a73147aabaa49d69f5f56c32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Surveys and Questionnaires
71 rdf:type schema:DefinedTerm
72 N0f48c2b3f68a46b697318acfbb0f1983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Psychometrics
74 rdf:type schema:DefinedTerm
75 N1205a9395bd94a0798193d272926680f schema:name pubmed_id
76 schema:value 22555470
77 rdf:type schema:PropertyValue
78 N128326250173467580fa684325f1bdef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Algorithms
80 rdf:type schema:DefinedTerm
81 N12d0e0e3c66549ec99cd79dff5c5c818 schema:issueNumber 3
82 rdf:type schema:PublicationIssue
83 N1b73ff63390c4f178001995719ae4dbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Aged
85 rdf:type schema:DefinedTerm
86 N238e67d0c3b346e6b4a8858001f69c02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Male
88 rdf:type schema:DefinedTerm
89 N2b44458ff4474359b7870074037161af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Models, Theoretical
91 rdf:type schema:DefinedTerm
92 N2c906b5e97674e42a0826f4c53a6e4f1 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N3c579b39d5ca41b3bc9d96c7980c890a schema:name nlm_unique_id
95 schema:value 9210257
96 rdf:type schema:PropertyValue
97 N425f1f63e0b14771a496d65870a7c31f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 N4671fd6b663d4ead8328a33144409332 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Predictive Value of Tests
102 rdf:type schema:DefinedTerm
103 N46b745d71270443d8a6ab8a80e7b7cc4 schema:volumeNumber 22
104 rdf:type schema:PublicationVolume
105 N5cda925b38eb4ae59222d1008697c868 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name London
107 rdf:type schema:DefinedTerm
108 N7d6ab75e7a2d42c0b4add58d8a2b88b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Linear Models
110 rdf:type schema:DefinedTerm
111 N82a5590fd64e48b49f3f71260f9e2a76 schema:name dimensions_id
112 schema:value pub.1012939608
113 rdf:type schema:PropertyValue
114 N85294bf99110432ba0810e3cb6cd0394 schema:name readcube_id
115 schema:value 3da55d62d088b4b2ca3eb7031093e4149d6f80fc18ed37078b0fef639875d5e4
116 rdf:type schema:PropertyValue
117 N905dcfc5cb51469cb82b491ed927c5fb schema:name doi
118 schema:value 10.1007/s11136-012-0189-4
119 rdf:type schema:PropertyValue
120 N96d0e3da90b047ef8c4521d99d19e044 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Reproducibility of Results
122 rdf:type schema:DefinedTerm
123 N9cc6753cf51b4aba90614a4a90c75967 rdf:first sg:person.012633757262.69
124 rdf:rest rdf:nil
125 Na4919b0eb368452cafa95ed7253e133f rdf:first sg:person.01307325071.02
126 rdf:rest N9cc6753cf51b4aba90614a4a90c75967
127 Nacb33e6dc97e4023811dcb62c42fabaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Arthroplasty, Replacement, Knee
129 rdf:type schema:DefinedTerm
130 Nca430bf6a857417787d296b6c322afd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Regression Analysis
132 rdf:type schema:DefinedTerm
133 Nd051bfa2f0a646d1ac6088638b01da40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Least-Squares Analysis
135 rdf:type schema:DefinedTerm
136 Nd97550cfb0874972a302d9aa2fe2b2d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Sickness Impact Profile
138 rdf:type schema:DefinedTerm
139 Ndab04e7af26b463d87dedb6fd02ebe3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Quality of Life
141 rdf:type schema:DefinedTerm
142 Ndd4d6bf9f99d43b3896bbac3cd441949 rdf:first sg:person.01153621741.45
143 rdf:rest Na4919b0eb368452cafa95ed7253e133f
144 Ne299330c3c89482da07e0c5e680b7b0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Middle Aged
146 rdf:type schema:DefinedTerm
147 Nf07cbae881ec48509033983b8ed2288e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Severity of Illness Index
149 rdf:type schema:DefinedTerm
150 Nf5f00e4008a945c5bab7f6da3d657ff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Quality-Adjusted Life Years
152 rdf:type schema:DefinedTerm
153 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
154 schema:name Mathematical Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
157 schema:name Statistics
158 rdf:type schema:DefinedTerm
159 sg:grant.5147359 http://pending.schema.org/fundedItem sg:pub.10.1007/s11136-012-0189-4
160 rdf:type schema:MonetaryGrant
161 sg:journal.1102620 schema:issn 0962-9343
162 1573-2649
163 schema:name Quality of Life Research
164 rdf:type schema:Periodical
165 sg:person.01153621741.45 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
166 schema:familyName Dakin
167 schema:givenName Helen
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153621741.45
169 rdf:type schema:Person
170 sg:person.012633757262.69 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
171 schema:familyName Murray
172 schema:givenName David
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69
174 rdf:type schema:Person
175 sg:person.01307325071.02 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
176 schema:familyName Gray
177 schema:givenName Alastair
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02
179 rdf:type schema:Person
180 sg:pub.10.1007/1-4020-5511-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027827136
181 https://doi.org/10.1007/1-4020-5511-0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s10198-009-0168-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050230614
184 https://doi.org/10.1007/s10198-009-0168-z
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/hec.1608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048178510
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/hec.4730040402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045405273
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.arth.2010.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033417473
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jval.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012317208
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1017/s0266462306051051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015044062
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1097/00005650-199711000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060223465
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/00005650-200006000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060223938
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1097/mlr.0b013e318207e9a8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035570793
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1524-4733.2008.00405.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023842364
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1136/bmjopen-2011-000332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033476360
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1177/0272989x05284108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017030709
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1177/0272989x07309642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018480137
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1177/0272989x09349961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005660373
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1177/0272989x9901900203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043127311
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1201/b14117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022455101
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1302/0301-620x.80b1.7859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064885821
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1302/0301-620x.89b8.19424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064886491
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1302/0301-620x.92b3.22913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025647884
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3109/07853890109002085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031090139
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
225 schema:name Department of Public Health, Health Economics Research Centre, University of Oxford, Old Road Campus, Headington, Oxford, UK
226 Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, UK
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...