Convergences in cognitive science, social network analysis, pattern recognition and machine intelligence as dynamic processes in non-Euclidean space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-21

AUTHORS

Joseph Woelfel

ABSTRACT

Students of human cognitive and cultural processes, social networks, pattern recognition and machine intelligence often find that the coordinate systems resulting from commonly used measurement and analysis tools yield non-Euclidean configurations. Typically, researchers consider this unfortunate, and seek methods to return the spaces to Euclidean configurations. This article details all the known methods of such transformations, but presents evidence from multiple fields of inquiry that shows the non-Euclidean nature of the space is meaningful, and that all transformations to Euclidean form produce serious distortions to measured values. The article further presents methods for describing processes in the non-Euclidean spaces along with empirical examples of such uses. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11135-019-00852-2

DOI

http://dx.doi.org/10.1007/s11135-019-00852-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112918822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "University at Buffalo, State University of New York, 339 Baldy Hall, 14260, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woelfel", 
        "givenName": "Joseph", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-8733(85)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001257724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(85)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001257724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89689-0_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011440433", 
          "https://doi.org/10.1007/978-3-540-89689-0_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89689-0_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011440433", 
          "https://doi.org/10.1007/978-3-540-89689-0_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018991466", 
          "https://doi.org/10.1007/bf02289233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018991466", 
          "https://doi.org/10.1007/bf02289233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-86110-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021422619", 
          "https://doi.org/10.1007/978-3-322-86110-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-86110-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021422619", 
          "https://doi.org/10.1007/978-3-322-86110-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029294563", 
          "https://doi.org/10.1007/bf02289630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029294563", 
          "https://doi.org/10.1007/bf02289630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00156300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030731728", 
          "https://doi.org/10.1007/bf00156300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00156300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030731728", 
          "https://doi.org/10.1007/bf00156300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13278-013-0117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036197746", 
          "https://doi.org/10.1007/s13278-013-0117-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00195403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040563205", 
          "https://doi.org/10.1007/bf00195403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215102", 
          "https://doi.org/10.1007/bf02289565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215102", 
          "https://doi.org/10.1007/bf02289565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02287916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050089135", 
          "https://doi.org/10.1007/bf02287916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02287916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050089135", 
          "https://doi.org/10.1007/bf02287916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2006.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050438877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17477/jcea.2014.13.2.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068336080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1418869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069483464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2014.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094317704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139878333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7208/chicago/9780226112879.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099510150"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-21", 
    "datePublishedReg": "2019-03-21", 
    "description": "Students of human cognitive and cultural processes, social networks, pattern recognition and machine intelligence often find that the coordinate systems resulting from commonly used measurement and analysis tools yield non-Euclidean configurations. Typically, researchers consider this unfortunate, and seek methods to return the spaces to Euclidean configurations. This article details all the known methods of such transformations, but presents evidence from multiple fields of inquiry that shows the non-Euclidean nature of the space is meaningful, and that all transformations to Euclidean form produce serious distortions to measured values. The article further presents methods for describing processes in the non-Euclidean spaces along with empirical examples of such uses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11135-019-00852-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053888", 
        "issn": [
          "0033-5177", 
          "1573-7845"
        ], 
        "name": "Quality & Quantity", 
        "type": "Periodical"
      }
    ], 
    "name": "Convergences in cognitive science, social network analysis, pattern recognition and machine intelligence as dynamic processes in non-Euclidean space", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c844746f92c7342d85f8098c4de0ce94e1fa8e3dddb61a9e1836bfdaa29359aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11135-019-00852-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112918822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11135-019-00852-2", 
      "https://app.dimensions.ai/details/publication/pub.1112918822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72866_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11135-019-00852-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11135-019-00852-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11135-019-00852-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11135-019-00852-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11135-019-00852-2'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      40 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11135-019-00852-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne85b1cd54c334feab45eaba7f990fe63
4 schema:citation sg:pub.10.1007/978-3-322-86110-8
5 sg:pub.10.1007/978-3-540-89689-0_59
6 sg:pub.10.1007/bf00156300
7 sg:pub.10.1007/bf00195403
8 sg:pub.10.1007/bf02287916
9 sg:pub.10.1007/bf02289233
10 sg:pub.10.1007/bf02289565
11 sg:pub.10.1007/bf02289630
12 sg:pub.10.1007/s13278-013-0117-9
13 https://doi.org/10.1016/0378-8733(85)90010-3
14 https://doi.org/10.1016/j.patcog.2006.04.016
15 https://doi.org/10.1017/cbo9781139878333
16 https://doi.org/10.1109/icpr.2014.277
17 https://doi.org/10.17477/jcea.2014.13.2.015
18 https://doi.org/10.2307/1418869
19 https://doi.org/10.7208/chicago/9780226112879.001.0001
20 schema:datePublished 2019-03-21
21 schema:datePublishedReg 2019-03-21
22 schema:description Students of human cognitive and cultural processes, social networks, pattern recognition and machine intelligence often find that the coordinate systems resulting from commonly used measurement and analysis tools yield non-Euclidean configurations. Typically, researchers consider this unfortunate, and seek methods to return the spaces to Euclidean configurations. This article details all the known methods of such transformations, but presents evidence from multiple fields of inquiry that shows the non-Euclidean nature of the space is meaningful, and that all transformations to Euclidean form produce serious distortions to measured values. The article further presents methods for describing processes in the non-Euclidean spaces along with empirical examples of such uses.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf sg:journal.1053888
27 schema:name Convergences in cognitive science, social network analysis, pattern recognition and machine intelligence as dynamic processes in non-Euclidean space
28 schema:pagination 1-16
29 schema:productId N129f247b2e67471aad857769e9a629f3
30 N6d1785c049ea4da58c2f5aeb188ad3b0
31 Ncc002ffda8bc43e5a8f1df7dc9c50fb4
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112918822
33 https://doi.org/10.1007/s11135-019-00852-2
34 schema:sdDatePublished 2019-04-11T12:54
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Na56db896a81c4989b2cefd9455582ecc
37 schema:url https://link.springer.com/10.1007%2Fs11135-019-00852-2
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N129f247b2e67471aad857769e9a629f3 schema:name dimensions_id
42 schema:value pub.1112918822
43 rdf:type schema:PropertyValue
44 N2df040b952584b14bff39103b6f15cdd schema:affiliation https://www.grid.ac/institutes/grid.273335.3
45 schema:familyName Woelfel
46 schema:givenName Joseph
47 rdf:type schema:Person
48 N6d1785c049ea4da58c2f5aeb188ad3b0 schema:name readcube_id
49 schema:value c844746f92c7342d85f8098c4de0ce94e1fa8e3dddb61a9e1836bfdaa29359aa
50 rdf:type schema:PropertyValue
51 Na56db896a81c4989b2cefd9455582ecc schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Ncc002ffda8bc43e5a8f1df7dc9c50fb4 schema:name doi
54 schema:value 10.1007/s11135-019-00852-2
55 rdf:type schema:PropertyValue
56 Ne85b1cd54c334feab45eaba7f990fe63 rdf:first N2df040b952584b14bff39103b6f15cdd
57 rdf:rest rdf:nil
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1053888 schema:issn 0033-5177
65 1573-7845
66 schema:name Quality & Quantity
67 rdf:type schema:Periodical
68 sg:pub.10.1007/978-3-322-86110-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021422619
69 https://doi.org/10.1007/978-3-322-86110-8
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/978-3-540-89689-0_59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011440433
72 https://doi.org/10.1007/978-3-540-89689-0_59
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf00156300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030731728
75 https://doi.org/10.1007/bf00156300
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf00195403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040563205
78 https://doi.org/10.1007/bf00195403
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02287916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050089135
81 https://doi.org/10.1007/bf02287916
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02289233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018991466
84 https://doi.org/10.1007/bf02289233
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02289565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215102
87 https://doi.org/10.1007/bf02289565
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02289630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029294563
90 https://doi.org/10.1007/bf02289630
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s13278-013-0117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036197746
93 https://doi.org/10.1007/s13278-013-0117-9
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0378-8733(85)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001257724
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.patcog.2006.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050438877
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/cbo9781139878333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667581
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/icpr.2014.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094317704
102 rdf:type schema:CreativeWork
103 https://doi.org/10.17477/jcea.2014.13.2.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068336080
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2307/1418869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069483464
106 rdf:type schema:CreativeWork
107 https://doi.org/10.7208/chicago/9780226112879.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099510150
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.273335.3 schema:alternateName University at Buffalo, State University of New York
110 schema:name University at Buffalo, State University of New York, 339 Baldy Hall, 14260, Buffalo, NY, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...