Optimizing the Information Outsourcing Practices of Primary Care Medical Organizations Using Entropy and TOPSIS View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04

AUTHORS

Pi-Fang Hsu, Mei-Ghing Hsu

ABSTRACT

As clinics strive to select information technology contractors that meet their particular outsourcing needs, the medical sector urgently needs evaluation criteria for outsourcing to information technology contractors to alleviate unnecessary risks and achieve an excellent performance. Therefore, this work presents an entropy combined technique for order preference by similarity to ideal solution (TOPSIS)-based decision-making method for clinics to objectively assess the quality of an information technology supplier when outsourcing their medical information needs, as an alternative to previous decision-making approaches based on subjective evaluations. Each sub-criterion for outsourcing vendors is evaluated using the Delphi method. Moreover, results of interviews with experts are integrated with the entropy method to calculate each criterion of an objective evaluation weight for medical information system (MIS) vendors. Furthermore, a TOPSIS-based survey is designed using comparison to effectively respond to MIS outsourcing demand scores for each item. Furthermore, the proposed entropy and TOPSIS-based decision-making method can provide administrators in hospital clinics with a decision-making and evaluation criteria that actively encourage the medical sector to outsource its information technology needs to contractors. More... »

PAGES

181-201

Journal

TITLE

Quality & Quantity

ISSUE

2

VOLUME

42

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11135-006-9040-8

DOI

http://dx.doi.org/10.1007/s11135-006-9040-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002740857


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yuanpei University", 
          "id": "https://www.grid.ac/institutes/grid.413051.2", 
          "name": [
            "Graduate Institute of Business and Management, Yuanpei University, Taiwan No. 306, Yuanpei St., 30015, Hsin Chu City, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Pi-Fang", 
        "id": "sg:person.016301350577.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301350577.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yuanpei University", 
          "id": "https://www.grid.ac/institutes/grid.413051.2", 
          "name": [
            "Graduate Institute of Business and Management, Yuanpei University, Taiwan No. 306, Yuanpei St., 30015, Hsin Chu City, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Mei-Ghing", 
        "id": "sg:person.016061166413.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016061166413.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00151903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012212128", 
          "https://doi.org/10.1007/bf00151903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00151903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012212128", 
          "https://doi.org/10.1007/bf00151903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijinfomgt.2003.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030724369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00123085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039345876", 
          "https://doi.org/10.1007/bf00123085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00123085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039345876", 
          "https://doi.org/10.1007/bf00123085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0268-4012(00)00007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039377974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2003.12.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041106735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0548(99)00069-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047391044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049999080", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48318-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049999080", 
          "https://doi.org/10.1007/978-3-642-48318-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48318-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049999080", 
          "https://doi.org/10.1007/978-3-642-48318-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00115514-200107000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074858082"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "As clinics strive to select information technology contractors that meet their particular outsourcing needs, the medical sector urgently needs evaluation criteria for outsourcing to information technology contractors to alleviate unnecessary risks and achieve an excellent performance. Therefore, this work presents an entropy combined technique for order preference by similarity to ideal solution (TOPSIS)-based decision-making method for clinics to objectively assess the quality of an information technology supplier when outsourcing their medical information needs, as an alternative to previous decision-making approaches based on subjective evaluations. Each sub-criterion for outsourcing vendors is evaluated using the Delphi method. Moreover, results of interviews with experts are integrated with the entropy method to calculate each criterion of an objective evaluation weight for medical information system (MIS) vendors. Furthermore, a TOPSIS-based survey is designed using comparison to effectively respond to MIS outsourcing demand scores for each item. Furthermore, the proposed entropy and TOPSIS-based decision-making method can provide administrators in hospital clinics with a decision-making and evaluation criteria that actively encourage the medical sector to outsource its information technology needs to contractors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11135-006-9040-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053888", 
        "issn": [
          "0033-5177", 
          "1573-7845"
        ], 
        "name": "Quality & Quantity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Optimizing the Information Outsourcing Practices of Primary Care Medical Organizations Using Entropy and TOPSIS", 
    "pagination": "181-201", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d0cf46836b2a04c2aefd53f5573a8d485e5c06d804301df5ecd750cb16708a7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11135-006-9040-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002740857"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11135-006-9040-8", 
      "https://app.dimensions.ai/details/publication/pub.1002740857"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000519.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11135-006-9040-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11135-006-9040-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11135-006-9040-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11135-006-9040-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11135-006-9040-8'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11135-006-9040-8 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N765e777ad18a4c8eaa43c45d696ce095
4 schema:citation sg:pub.10.1007/978-3-642-48318-9
5 sg:pub.10.1007/bf00123085
6 sg:pub.10.1007/bf00151903
7 https://app.dimensions.ai/details/publication/pub.1049999080
8 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
9 https://doi.org/10.1016/j.amc.2003.12.087
10 https://doi.org/10.1016/j.ijinfomgt.2003.12.011
11 https://doi.org/10.1016/s0268-4012(00)00007-4
12 https://doi.org/10.1016/s0305-0548(99)00069-6
13 https://doi.org/10.1097/00115514-200107000-00007
14 https://doi.org/10.1103/physrev.106.620
15 schema:datePublished 2008-04
16 schema:datePublishedReg 2008-04-01
17 schema:description As clinics strive to select information technology contractors that meet their particular outsourcing needs, the medical sector urgently needs evaluation criteria for outsourcing to information technology contractors to alleviate unnecessary risks and achieve an excellent performance. Therefore, this work presents an entropy combined technique for order preference by similarity to ideal solution (TOPSIS)-based decision-making method for clinics to objectively assess the quality of an information technology supplier when outsourcing their medical information needs, as an alternative to previous decision-making approaches based on subjective evaluations. Each sub-criterion for outsourcing vendors is evaluated using the Delphi method. Moreover, results of interviews with experts are integrated with the entropy method to calculate each criterion of an objective evaluation weight for medical information system (MIS) vendors. Furthermore, a TOPSIS-based survey is designed using comparison to effectively respond to MIS outsourcing demand scores for each item. Furthermore, the proposed entropy and TOPSIS-based decision-making method can provide administrators in hospital clinics with a decision-making and evaluation criteria that actively encourage the medical sector to outsource its information technology needs to contractors.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N2ad247a3288946919e74c465f3d82405
22 N989aa7414363457ea8fbc345515d08eb
23 sg:journal.1053888
24 schema:name Optimizing the Information Outsourcing Practices of Primary Care Medical Organizations Using Entropy and TOPSIS
25 schema:pagination 181-201
26 schema:productId N4fc151e33c0f40dfabf4274fbd8585b2
27 N7b7c4555e2c34557a5c3cd5ddd635e6f
28 N90501d7de218467bbb0a2189331d73ae
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002740857
30 https://doi.org/10.1007/s11135-006-9040-8
31 schema:sdDatePublished 2019-04-10T15:53
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N776a6ea6b5134a8d958a451f16113328
34 schema:url http://link.springer.com/10.1007%2Fs11135-006-9040-8
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2ad247a3288946919e74c465f3d82405 schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 N4fc151e33c0f40dfabf4274fbd8585b2 schema:name doi
41 schema:value 10.1007/s11135-006-9040-8
42 rdf:type schema:PropertyValue
43 N765e777ad18a4c8eaa43c45d696ce095 rdf:first sg:person.016301350577.91
44 rdf:rest Nfa66540d02ac4e7c9d4d00d10505b08f
45 N776a6ea6b5134a8d958a451f16113328 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N7b7c4555e2c34557a5c3cd5ddd635e6f schema:name readcube_id
48 schema:value 0d0cf46836b2a04c2aefd53f5573a8d485e5c06d804301df5ecd750cb16708a7
49 rdf:type schema:PropertyValue
50 N90501d7de218467bbb0a2189331d73ae schema:name dimensions_id
51 schema:value pub.1002740857
52 rdf:type schema:PropertyValue
53 N989aa7414363457ea8fbc345515d08eb schema:volumeNumber 42
54 rdf:type schema:PublicationVolume
55 Nfa66540d02ac4e7c9d4d00d10505b08f rdf:first sg:person.016061166413.31
56 rdf:rest rdf:nil
57 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
58 schema:name Information and Computing Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information Systems
62 rdf:type schema:DefinedTerm
63 sg:journal.1053888 schema:issn 0033-5177
64 1573-7845
65 schema:name Quality & Quantity
66 rdf:type schema:Periodical
67 sg:person.016061166413.31 schema:affiliation https://www.grid.ac/institutes/grid.413051.2
68 schema:familyName Hsu
69 schema:givenName Mei-Ghing
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016061166413.31
71 rdf:type schema:Person
72 sg:person.016301350577.91 schema:affiliation https://www.grid.ac/institutes/grid.413051.2
73 schema:familyName Hsu
74 schema:givenName Pi-Fang
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301350577.91
76 rdf:type schema:Person
77 sg:pub.10.1007/978-3-642-48318-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049999080
78 https://doi.org/10.1007/978-3-642-48318-9
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf00123085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039345876
81 https://doi.org/10.1007/bf00123085
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf00151903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012212128
84 https://doi.org/10.1007/bf00151903
85 rdf:type schema:CreativeWork
86 https://app.dimensions.ai/details/publication/pub.1049999080 schema:CreativeWork
87 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.amc.2003.12.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041106735
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.ijinfomgt.2003.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030724369
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0268-4012(00)00007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039377974
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0305-0548(99)00069-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047391044
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1097/00115514-200107000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074858082
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.413051.2 schema:alternateName Yuanpei University
102 schema:name Graduate Institute of Business and Management, Yuanpei University, Taiwan No. 306, Yuanpei St., 30015, Hsin Chu City, Taiwan, R.O.C.
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...