Markov chains on Z+: analysis of stationary measure via harmonic functions approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Denis Denisov, Dmitry Korshunov, Vitali Wachtel

ABSTRACT

We suggest a method for constructing a positive harmonic function for a wide class of transition kernels on Z+. We also find natural conditions under which this harmonic function has a positive finite limit at infinity. Further, we apply our results on harmonic functions to asymptotically homogeneous Markov chains on Z+ with asymptotically negative drift which arise in various queueing models. More precisely, assuming that the Markov chain satisfies Cramér’s condition, we study the tail asymptotics of its stationary distribution. In particular, we clarify the impact of the rate of convergence of chain jumps towards the limiting distribution. More... »

PAGES

265-295

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11134-019-09602-5

DOI

http://dx.doi.org/10.1007/s11134-019-09602-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112226928


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denisov", 
        "givenName": "Denis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Lancaster University, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korshunov", 
        "givenName": "Dmitry", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "University of Augsburg, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wachtel", 
        "givenName": "Vitali", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11006-006-0013-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006789820", 
          "https://doi.org/10.1007/s11006-006-0013-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10959-007-0132-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018525909", 
          "https://doi.org/10.1007/s10959-007-0132-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/bdr115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028048489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1038536370", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-3267-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038536370", 
          "https://doi.org/10.1007/978-1-4471-3267-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-3267-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038536370", 
          "https://doi.org/10.1007/978-1-4471-3267-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0024610798006826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046218157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100027638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053867081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/tprbau000041000001000001000001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062885183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177700401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176988497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511801655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667872"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We suggest a method for constructing a positive harmonic function for a wide class of transition kernels on Z+. We also find natural conditions under which this harmonic function has a positive finite limit at infinity. Further, we apply our results on harmonic functions to asymptotically homogeneous Markov chains on Z+ with asymptotically negative drift which arise in various queueing models. More precisely, assuming that the Markov chain satisfies Cram\u00e9r\u2019s condition, we study the tail asymptotics of its stationary distribution. In particular, we clarify the impact of the rate of convergence of chain jumps towards the limiting distribution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11134-019-09602-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048269", 
        "issn": [
          "0257-0130", 
          "1572-9443"
        ], 
        "name": "Queueing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Markov chains on Z+: analysis of stationary measure via harmonic functions approach", 
    "pagination": "265-295", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91524022bfd29c1e4560fbca0a0d1e3044715b5c71c866086926fcc448024d60"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11134-019-09602-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112226928"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11134-019-09602-5", 
      "https://app.dimensions.ai/details/publication/pub.1112226928"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11134-019-09602-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11134-019-09602-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11134-019-09602-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11134-019-09602-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11134-019-09602-5'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11134-019-09602-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N391840bf852f497b89567f8e6113e693
4 schema:citation sg:pub.10.1007/978-1-4471-3267-7
5 sg:pub.10.1007/978-3-642-65809-9
6 sg:pub.10.1007/s10959-007-0132-8
7 sg:pub.10.1007/s11006-006-0013-y
8 https://app.dimensions.ai/details/publication/pub.1038536370
9 https://doi.org/10.1017/cbo9780511801655
10 https://doi.org/10.1017/s0305004100027638
11 https://doi.org/10.1112/blms/bdr115
12 https://doi.org/10.1112/s0024610798006826
13 https://doi.org/10.1137/tprbau000041000001000001000001
14 https://doi.org/10.1214/aoms/1177700401
15 https://doi.org/10.1214/aoms/1177728975
16 https://doi.org/10.1214/aop/1176988497
17 schema:datePublished 2019-04
18 schema:datePublishedReg 2019-04-01
19 schema:description We suggest a method for constructing a positive harmonic function for a wide class of transition kernels on Z+. We also find natural conditions under which this harmonic function has a positive finite limit at infinity. Further, we apply our results on harmonic functions to asymptotically homogeneous Markov chains on Z+ with asymptotically negative drift which arise in various queueing models. More precisely, assuming that the Markov chain satisfies Cramér’s condition, we study the tail asymptotics of its stationary distribution. In particular, we clarify the impact of the rate of convergence of chain jumps towards the limiting distribution.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N44a90cb7a82243e0aa72f14abb18b7fd
24 Nf2a24dd9cd5a4f1696c3b8d6461af1f7
25 sg:journal.1048269
26 schema:name Markov chains on Z+: analysis of stationary measure via harmonic functions approach
27 schema:pagination 265-295
28 schema:productId N04ef4ee0ac0d4bf69d59525337366535
29 N2da14660065444c9a6a042792363744a
30 N3374d8290b1b4ea0a40e65b3846b4b20
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112226928
32 https://doi.org/10.1007/s11134-019-09602-5
33 schema:sdDatePublished 2019-04-11T13:55
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nfacdc8f033a249faa232cc6888c6c616
36 schema:url https://link.springer.com/10.1007%2Fs11134-019-09602-5
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N04ef4ee0ac0d4bf69d59525337366535 schema:name readcube_id
41 schema:value 91524022bfd29c1e4560fbca0a0d1e3044715b5c71c866086926fcc448024d60
42 rdf:type schema:PropertyValue
43 N2da14660065444c9a6a042792363744a schema:name doi
44 schema:value 10.1007/s11134-019-09602-5
45 rdf:type schema:PropertyValue
46 N31ebf9a5e4324cd59ae2856d5e086a5f schema:affiliation https://www.grid.ac/institutes/grid.5379.8
47 schema:familyName Denisov
48 schema:givenName Denis
49 rdf:type schema:Person
50 N3374d8290b1b4ea0a40e65b3846b4b20 schema:name dimensions_id
51 schema:value pub.1112226928
52 rdf:type schema:PropertyValue
53 N391840bf852f497b89567f8e6113e693 rdf:first N31ebf9a5e4324cd59ae2856d5e086a5f
54 rdf:rest Nb2d73bdd53fc4ff2969d842447b83bab
55 N44a90cb7a82243e0aa72f14abb18b7fd schema:volumeNumber 91
56 rdf:type schema:PublicationVolume
57 N4ab5a4dc38554ef9982961a4280bf1d7 schema:affiliation https://www.grid.ac/institutes/grid.9835.7
58 schema:familyName Korshunov
59 schema:givenName Dmitry
60 rdf:type schema:Person
61 N832ac5bf1e5641b593d331f26d8e349f schema:affiliation https://www.grid.ac/institutes/grid.7307.3
62 schema:familyName Wachtel
63 schema:givenName Vitali
64 rdf:type schema:Person
65 Nb2d73bdd53fc4ff2969d842447b83bab rdf:first N4ab5a4dc38554ef9982961a4280bf1d7
66 rdf:rest Nf1d7ac0a60f6423ba1e1e5ed547a22f8
67 Nf1d7ac0a60f6423ba1e1e5ed547a22f8 rdf:first N832ac5bf1e5641b593d331f26d8e349f
68 rdf:rest rdf:nil
69 Nf2a24dd9cd5a4f1696c3b8d6461af1f7 schema:issueNumber 3-4
70 rdf:type schema:PublicationIssue
71 Nfacdc8f033a249faa232cc6888c6c616 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1048269 schema:issn 0257-0130
80 1572-9443
81 schema:name Queueing Systems
82 rdf:type schema:Periodical
83 sg:pub.10.1007/978-1-4471-3267-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038536370
84 https://doi.org/10.1007/978-1-4471-3267-7
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/978-3-642-65809-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273926
87 https://doi.org/10.1007/978-3-642-65809-9
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s10959-007-0132-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018525909
90 https://doi.org/10.1007/s10959-007-0132-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s11006-006-0013-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006789820
93 https://doi.org/10.1007/s11006-006-0013-y
94 rdf:type schema:CreativeWork
95 https://app.dimensions.ai/details/publication/pub.1038536370 schema:CreativeWork
96 https://doi.org/10.1017/cbo9780511801655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667872
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1017/s0305004100027638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053867081
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1112/blms/bdr115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048489
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1112/s0024610798006826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046218157
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1137/tprbau000041000001000001000001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062885183
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1214/aoms/1177700401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400100
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1214/aoms/1177728975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401580
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1214/aop/1176988497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403565
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
113 schema:name University of Manchester, Manchester, UK
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
116 schema:name University of Augsburg, Augsburg, Germany
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.9835.7 schema:alternateName Lancaster University
119 schema:name Lancaster University, Lancaster, UK
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...