On the distribution of typical shortest-path lengths in connected random geometric graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-06

AUTHORS

D. Neuhäuser, C. Hirsch, C. Gloaguen, V. Schmidt

ABSTRACT

Stationary point processes in ℝ2 with two different types of points, say H and L, are considered where the points are located on the edge set G of a random geometric graph, which is assumed to be stationary and connected. Examples include the classical Poisson–Voronoi tessellation with bounded and convex cells, aggregate Voronoi tessellations induced by two (or more) independent Poisson processes whose cells can be nonconvex, and so-called β-skeletons being subgraphs of Poisson–Delaunay triangulations. The length of the shortest path along G from a point of type H to its closest neighbor of type L is investigated. Two different meanings of “closeness” are considered: either with respect to the Euclidean distance (e-closeness) or in a graph-theoretic sense, i.e., along the edges of G (g-closeness). For both scenarios, comparability and monotonicity properties of the corresponding typical shortest-path lengths Ce∗ and Cg∗ are analyzed. Furthermore, extending the results which have recently been derived for Ce∗, we show that the distribution of Cg∗ converges to simple parametric limit distributions if the edge set G becomes unboundedly sparse or dense, i.e., a scaling factor κ converges to zero and infinity, respectively. More... »

PAGES

199-220

References to SciGraph publications

Journal

TITLE

Queueing Systems

ISSUE

1-2

VOLUME

71

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11134-012-9276-z

DOI

http://dx.doi.org/10.1007/s11134-012-9276-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001277440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neuh\u00e4user", 
        "givenName": "D.", 
        "id": "sg:person.012336342133.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336342133.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirsch", 
        "givenName": "C.", 
        "id": "sg:person.015752751047.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752751047.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "Orange Labs, 38-40, rue du G\u00e9n\u00e9ral Leclerc, 92794, Issy-les-Moulineaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gloaguen", 
        "givenName": "C.", 
        "id": "sg:person.0736175422.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "V.", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/15326340008807577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003825123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12243-010-0218-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021025364", 
          "https://doi.org/10.1007/s12243-010-0218-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-87806-9.50013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027525264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15326349.2011.542735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031525954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0097494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033354192", 
          "https://doi.org/10.1007/bfb0097494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45995-2_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048781642", 
          "https://doi.org/10.1007/3-540-45995-2_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1050491356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78859-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491356", 
          "https://doi.org/10.1007/978-3-540-78859-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78859-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491356", 
          "https://doi.org/10.1007/978-3-540-78859-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00008802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053393745", 
          "https://doi.org/10.1007/pl00008802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-sts335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1037990949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1293113145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1428159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069490971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198506263.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098718802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109505356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109505356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470725160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109505356"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-06", 
    "datePublishedReg": "2012-06-01", 
    "description": "Stationary point processes in \u211d2 with two different types of points, say H and L, are considered where the points are located on the edge set G of a random geometric graph, which is assumed to be stationary and connected. Examples include the classical Poisson\u2013Voronoi tessellation with bounded and convex cells, aggregate Voronoi tessellations induced by two (or more) independent Poisson processes whose cells can be nonconvex, and so-called \u03b2-skeletons being subgraphs of Poisson\u2013Delaunay triangulations. The length of the shortest path along G from a point of type H to its closest neighbor of type L is investigated. Two different meanings of \u201ccloseness\u201d are considered: either with respect to the Euclidean distance (e-closeness) or in a graph-theoretic sense, i.e., along the edges of G (g-closeness). For both scenarios, comparability and monotonicity properties of the corresponding typical shortest-path lengths Ce\u2217 and Cg\u2217 are analyzed. Furthermore, extending the results which have recently been derived for Ce\u2217, we show that the distribution of Cg\u2217 converges to simple parametric limit distributions if the edge set G becomes unboundedly sparse or dense, i.e., a scaling factor \u03ba converges to zero and infinity, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11134-012-9276-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048269", 
        "issn": [
          "0257-0130", 
          "1572-9443"
        ], 
        "name": "Queueing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "On the distribution of typical shortest-path lengths in connected random geometric graphs", 
    "pagination": "199-220", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0615962e1ff2340f6c7a150f9bd51c8680bbcea37cb97efaa802253185c14eca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11134-012-9276-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001277440"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11134-012-9276-z", 
      "https://app.dimensions.ai/details/publication/pub.1001277440"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000579.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11134-012-9276-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11134-012-9276-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11134-012-9276-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11134-012-9276-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11134-012-9276-z'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11134-012-9276-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N13e3945b095142abb3cc805fe059cbad
4 schema:citation sg:pub.10.1007/3-540-45995-2_42
5 sg:pub.10.1007/978-3-540-78859-1
6 sg:pub.10.1007/bfb0097494
7 sg:pub.10.1007/pl00008802
8 sg:pub.10.1007/s12243-010-0218-7
9 https://app.dimensions.ai/details/publication/pub.1050491356
10 https://app.dimensions.ai/details/publication/pub.1109505356
11 https://doi.org/10.1002/9780470725160
12 https://doi.org/10.1016/b978-0-444-87806-9.50013-x
13 https://doi.org/10.1080/15326340008807577
14 https://doi.org/10.1080/15326349.2011.542735
15 https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
16 https://doi.org/10.1214/10-sts335
17 https://doi.org/10.1239/aap/1037990949
18 https://doi.org/10.1239/aap/1293113145
19 https://doi.org/10.2307/1428159
20 schema:datePublished 2012-06
21 schema:datePublishedReg 2012-06-01
22 schema:description Stationary point processes in ℝ2 with two different types of points, say H and L, are considered where the points are located on the edge set G of a random geometric graph, which is assumed to be stationary and connected. Examples include the classical Poisson–Voronoi tessellation with bounded and convex cells, aggregate Voronoi tessellations induced by two (or more) independent Poisson processes whose cells can be nonconvex, and so-called β-skeletons being subgraphs of Poisson–Delaunay triangulations. The length of the shortest path along G from a point of type H to its closest neighbor of type L is investigated. Two different meanings of “closeness” are considered: either with respect to the Euclidean distance (e-closeness) or in a graph-theoretic sense, i.e., along the edges of G (g-closeness). For both scenarios, comparability and monotonicity properties of the corresponding typical shortest-path lengths Ce∗ and Cg∗ are analyzed. Furthermore, extending the results which have recently been derived for Ce∗, we show that the distribution of Cg∗ converges to simple parametric limit distributions if the edge set G becomes unboundedly sparse or dense, i.e., a scaling factor κ converges to zero and infinity, respectively.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N00676b3a8f8640dca92edcc982eb9dc8
27 Naeb6bfceef4b4b56ac0b78f1c4e928c8
28 sg:journal.1048269
29 schema:name On the distribution of typical shortest-path lengths in connected random geometric graphs
30 schema:pagination 199-220
31 schema:productId N76b3b7a798fb44e684bd078c0ce24c10
32 Nc140d059cd9848a3a12d322a78c23ead
33 Nc8e47695a9a14d1c98b0e059e981b3db
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001277440
35 https://doi.org/10.1007/s11134-012-9276-z
36 schema:sdDatePublished 2019-04-11T00:27
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N409f535adc2b48dc95f174c437a9c4f7
39 schema:url http://link.springer.com/10.1007%2Fs11134-012-9276-z
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N00676b3a8f8640dca92edcc982eb9dc8 schema:volumeNumber 71
44 rdf:type schema:PublicationVolume
45 N0a1e8848cdca4bebbf70abaf41d6965d rdf:first sg:person.0736175422.90
46 rdf:rest N5b2b851650634f6a9dde4c6ea3d995f9
47 N13e3945b095142abb3cc805fe059cbad rdf:first sg:person.012336342133.11
48 rdf:rest N3f60bc127c114780985e584882e38cf4
49 N3f60bc127c114780985e584882e38cf4 rdf:first sg:person.015752751047.99
50 rdf:rest N0a1e8848cdca4bebbf70abaf41d6965d
51 N409f535adc2b48dc95f174c437a9c4f7 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N5b2b851650634f6a9dde4c6ea3d995f9 rdf:first sg:person.01051347101.48
54 rdf:rest rdf:nil
55 N76b3b7a798fb44e684bd078c0ce24c10 schema:name readcube_id
56 schema:value 0615962e1ff2340f6c7a150f9bd51c8680bbcea37cb97efaa802253185c14eca
57 rdf:type schema:PropertyValue
58 Naeb6bfceef4b4b56ac0b78f1c4e928c8 schema:issueNumber 1-2
59 rdf:type schema:PublicationIssue
60 Nc140d059cd9848a3a12d322a78c23ead schema:name doi
61 schema:value 10.1007/s11134-012-9276-z
62 rdf:type schema:PropertyValue
63 Nc8e47695a9a14d1c98b0e059e981b3db schema:name dimensions_id
64 schema:value pub.1001277440
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
70 schema:name Statistics
71 rdf:type schema:DefinedTerm
72 sg:journal.1048269 schema:issn 0257-0130
73 1572-9443
74 schema:name Queueing Systems
75 rdf:type schema:Periodical
76 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
77 schema:familyName Schmidt
78 schema:givenName V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
80 rdf:type schema:Person
81 sg:person.012336342133.11 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
82 schema:familyName Neuhäuser
83 schema:givenName D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336342133.11
85 rdf:type schema:Person
86 sg:person.015752751047.99 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
87 schema:familyName Hirsch
88 schema:givenName C.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752751047.99
90 rdf:type schema:Person
91 sg:person.0736175422.90 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
92 schema:familyName Gloaguen
93 schema:givenName C.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90
95 rdf:type schema:Person
96 sg:pub.10.1007/3-540-45995-2_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048781642
97 https://doi.org/10.1007/3-540-45995-2_42
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-540-78859-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050491356
100 https://doi.org/10.1007/978-3-540-78859-1
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bfb0097494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033354192
103 https://doi.org/10.1007/bfb0097494
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/pl00008802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053393745
106 https://doi.org/10.1007/pl00008802
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s12243-010-0218-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021025364
109 https://doi.org/10.1007/s12243-010-0218-7
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1050491356 schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1109505356 schema:CreativeWork
113 https://doi.org/10.1002/9780470725160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109505356
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/b978-0-444-87806-9.50013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027525264
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/15326340008807577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003825123
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/15326349.2011.542735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031525954
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/acprof:oso/9780198506263.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098718802
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1214/10-sts335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391679
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1239/aap/1037990949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440508
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1239/aap/1293113145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440968
128 rdf:type schema:CreativeWork
129 https://doi.org/10.2307/1428159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069490971
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
132 schema:name Institute of Stochastics, Ulm University, 89069, Ulm, Germany
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
135 schema:name Orange Labs, 38-40, rue du Général Leclerc, 92794, Issy-les-Moulineaux, France
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...