Inverse problems in queueing theory and Internet probing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12

AUTHORS

F. Baccelli, B. Kauffmann, D. Veitch

ABSTRACT

Queueing theory is typically concerned with the solution of direct problems, where the trajectory of the queueing system, and laws thereof, are derived based on a complete specification of the system, its inputs and initial conditions. In this paper we point out the importance of inverse problems in queueing theory, which aim to deduce unknown parameters of the system based on partially observed trajectories. We focus on the class of problems stemming from probing based methods for packet switched telecommunications networks, which have become a central tool in the measurement of the structure and performance of the Internet. We provide a general definition of the inverse problems in this class and map out the key variants: the analytical methods, the statistical methods and the design of experiments. We also contribute to the theory in each of these subdomains. Accordingly, a particular inverse problem based on product-form queueing network theory is tackled in detail, and a number of other examples are given. We also show how this inverse problem viewpoint translates to the design of concrete Internet probing applications. More... »

PAGES

59

Journal

TITLE

Queueing Systems

ISSUE

1-4

VOLUME

63

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11134-009-9150-9

DOI

http://dx.doi.org/10.1007/s11134-009-9150-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036268841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA, \u00c9cole Normale Sup\u00e9rieure, \u00c9quipe TREC, 23 avenue d\u2019Italie, CS 81321, 75214, Paris Cedex 13, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baccelli", 
        "givenName": "F.", 
        "id": "sg:person.013374336621.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRIA, \u00c9cole Normale Sup\u00e9rieure, \u00c9quipe TREC, 23 avenue d\u2019Italie, CS 81321, 75214, Paris Cedex 13, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kauffmann", 
        "givenName": "B.", 
        "id": "sg:person.010277066257.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010277066257.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN), CUBIN is an affiliated program of National ICT Australia (NICTA), Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veitch", 
        "givenName": "D.", 
        "id": "sg:person.014211661203.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211661203.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11134-006-6670-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003480907", 
          "https://doi.org/10.1007/s11134-006-6670-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/65950.65957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004375823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1298306.1298346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006495452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1028788.1028831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010797587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016335255", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11657-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016335255", 
          "https://doi.org/10.1007/978-3-662-11657-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11657-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016335255", 
          "https://doi.org/10.1007/978-3-662-11657-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4149(97)00114-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021873689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4250-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024387799", 
          "https://doi.org/10.1007/978-1-4612-4250-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4250-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024387799", 
          "https://doi.org/10.1007/978-1-4612-4250-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1005686.1005728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025297134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1232919.1232922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030803380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800043172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032121012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/378420.378440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032575216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/948205.948211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032750739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/347059.347557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038602566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1639562.1639597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044752965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1030194.1015476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046487243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-5316(97)00023-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050655062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peva.2007.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052043467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.796384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.971737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/90.392383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/90.779192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2002.805522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061346346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mnet.2003.1248658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061411379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2003.814460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1151659.1159940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063152170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.36.5.586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2001.916298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093830700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2001.940573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093973342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511608728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098701211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1330107.1330127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098889045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "Queueing theory is typically concerned with the solution of direct problems, where the trajectory of the queueing system, and laws thereof, are derived based on a complete specification of the system, its inputs and initial conditions. In this paper we point out the importance of inverse problems in queueing theory, which aim to deduce unknown parameters of the system based on partially observed trajectories. We focus on the class of problems stemming from probing based methods for packet switched telecommunications networks, which have become a central tool in the measurement of the structure and performance of the Internet. We provide a general definition of the inverse problems in this class and map out the key variants: the analytical methods, the statistical methods and the design of experiments. We also contribute to the theory in each of these subdomains. Accordingly, a particular inverse problem based on product-form queueing network theory is tackled in detail, and a number of other examples are given. We also show how this inverse problem viewpoint translates to the design of concrete Internet probing applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11134-009-9150-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048269", 
        "issn": [
          "0257-0130", 
          "1572-9443"
        ], 
        "name": "Queueing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "name": "Inverse problems in queueing theory and Internet probing", 
    "pagination": "59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "acc504064c8b5d792a8930cf191e795a7825be54a5da3164c51f4498e50be459"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11134-009-9150-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036268841"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11134-009-9150-9", 
      "https://app.dimensions.ai/details/publication/pub.1036268841"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11134-009-9150-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11134-009-9150-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11134-009-9150-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11134-009-9150-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11134-009-9150-9'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11134-009-9150-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd4da797d1fb54e7490425105897760bb
4 schema:citation sg:pub.10.1007/978-1-4612-4250-5
5 sg:pub.10.1007/978-3-662-11657-9
6 sg:pub.10.1007/s11134-006-6670-4
7 https://app.dimensions.ai/details/publication/pub.1016335255
8 https://doi.org/10.1016/j.peva.2007.06.002
9 https://doi.org/10.1016/s0166-5316(97)00023-0
10 https://doi.org/10.1016/s0304-4149(97)00114-2
11 https://doi.org/10.1017/cbo9780511608728
12 https://doi.org/10.1017/s0001867800043172
13 https://doi.org/10.1109/18.796384
14 https://doi.org/10.1109/18.971737
15 https://doi.org/10.1109/90.392383
16 https://doi.org/10.1109/90.779192
17 https://doi.org/10.1109/icassp.2001.940573
18 https://doi.org/10.1109/infcom.2001.916298
19 https://doi.org/10.1109/lcomm.2002.805522
20 https://doi.org/10.1109/mnet.2003.1248658
21 https://doi.org/10.1109/tsp.2003.814460
22 https://doi.org/10.1145/1005686.1005728
23 https://doi.org/10.1145/1028788.1028831
24 https://doi.org/10.1145/1030194.1015476
25 https://doi.org/10.1145/1151659.1159940
26 https://doi.org/10.1145/1232919.1232922
27 https://doi.org/10.1145/1298306.1298346
28 https://doi.org/10.1145/1330107.1330127
29 https://doi.org/10.1145/1639562.1639597
30 https://doi.org/10.1145/347059.347557
31 https://doi.org/10.1145/378420.378440
32 https://doi.org/10.1145/65950.65957
33 https://doi.org/10.1145/948205.948211
34 https://doi.org/10.1287/mnsc.36.5.586
35 schema:datePublished 2009-12
36 schema:datePublishedReg 2009-12-01
37 schema:description Queueing theory is typically concerned with the solution of direct problems, where the trajectory of the queueing system, and laws thereof, are derived based on a complete specification of the system, its inputs and initial conditions. In this paper we point out the importance of inverse problems in queueing theory, which aim to deduce unknown parameters of the system based on partially observed trajectories. We focus on the class of problems stemming from probing based methods for packet switched telecommunications networks, which have become a central tool in the measurement of the structure and performance of the Internet. We provide a general definition of the inverse problems in this class and map out the key variants: the analytical methods, the statistical methods and the design of experiments. We also contribute to the theory in each of these subdomains. Accordingly, a particular inverse problem based on product-form queueing network theory is tackled in detail, and a number of other examples are given. We also show how this inverse problem viewpoint translates to the design of concrete Internet probing applications.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N66416ffada7d49969a98754d12ea387d
42 N8e32ca2b7f30499594252d65107f607a
43 sg:journal.1048269
44 schema:name Inverse problems in queueing theory and Internet probing
45 schema:pagination 59
46 schema:productId Na6ffe192958544a6b3ae5d828a202de0
47 Nb251bc679ea945fa95f38f0e94b471bd
48 Nb548c84812e84718a39649260acaf022
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036268841
50 https://doi.org/10.1007/s11134-009-9150-9
51 schema:sdDatePublished 2019-04-11T09:31
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nc191eb1ef520423abc37b1ab9d015477
54 schema:url http://link.springer.com/10.1007%2Fs11134-009-9150-9
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1196d9e64b00436cbe9f35995b744cb8 rdf:first sg:person.010277066257.54
59 rdf:rest Nbf930f3a970b46849e48333543335196
60 N1669add8e3b5409e9a5011a8f5efe7a1 schema:name INRIA, École Normale Supérieure, Équipe TREC, 23 avenue d’Italie, CS 81321, 75214, Paris Cedex 13, France
61 rdf:type schema:Organization
62 N66416ffada7d49969a98754d12ea387d schema:issueNumber 1-4
63 rdf:type schema:PublicationIssue
64 N8e32ca2b7f30499594252d65107f607a schema:volumeNumber 63
65 rdf:type schema:PublicationVolume
66 Na21e80c976b54a9f94b54b6dbd2b2f32 schema:name INRIA, École Normale Supérieure, Équipe TREC, 23 avenue d’Italie, CS 81321, 75214, Paris Cedex 13, France
67 rdf:type schema:Organization
68 Na6ffe192958544a6b3ae5d828a202de0 schema:name doi
69 schema:value 10.1007/s11134-009-9150-9
70 rdf:type schema:PropertyValue
71 Nb251bc679ea945fa95f38f0e94b471bd schema:name dimensions_id
72 schema:value pub.1036268841
73 rdf:type schema:PropertyValue
74 Nb548c84812e84718a39649260acaf022 schema:name readcube_id
75 schema:value acc504064c8b5d792a8930cf191e795a7825be54a5da3164c51f4498e50be459
76 rdf:type schema:PropertyValue
77 Nbf930f3a970b46849e48333543335196 rdf:first sg:person.014211661203.92
78 rdf:rest rdf:nil
79 Nc191eb1ef520423abc37b1ab9d015477 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nd4da797d1fb54e7490425105897760bb rdf:first sg:person.013374336621.69
82 rdf:rest N1196d9e64b00436cbe9f35995b744cb8
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
87 schema:name Statistics
88 rdf:type schema:DefinedTerm
89 sg:journal.1048269 schema:issn 0257-0130
90 1572-9443
91 schema:name Queueing Systems
92 rdf:type schema:Periodical
93 sg:person.010277066257.54 schema:affiliation Na21e80c976b54a9f94b54b6dbd2b2f32
94 schema:familyName Kauffmann
95 schema:givenName B.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010277066257.54
97 rdf:type schema:Person
98 sg:person.013374336621.69 schema:affiliation N1669add8e3b5409e9a5011a8f5efe7a1
99 schema:familyName Baccelli
100 schema:givenName F.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69
102 rdf:type schema:Person
103 sg:person.014211661203.92 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
104 schema:familyName Veitch
105 schema:givenName D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211661203.92
107 rdf:type schema:Person
108 sg:pub.10.1007/978-1-4612-4250-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024387799
109 https://doi.org/10.1007/978-1-4612-4250-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-662-11657-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016335255
112 https://doi.org/10.1007/978-3-662-11657-9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11134-006-6670-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003480907
115 https://doi.org/10.1007/s11134-006-6670-4
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1016335255 schema:CreativeWork
118 https://doi.org/10.1016/j.peva.2007.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052043467
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0166-5316(97)00023-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050655062
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0304-4149(97)00114-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021873689
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1017/cbo9780511608728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098701211
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/s0001867800043172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032121012
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/18.796384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101115
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/18.971737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101818
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/90.392383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247149
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/90.779192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247458
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/icassp.2001.940573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093973342
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/infcom.2001.916298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093830700
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/lcomm.2002.805522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061346346
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/mnet.2003.1248658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061411379
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tsp.2003.814460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798940
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1005686.1005728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025297134
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/1028788.1028831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010797587
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/1030194.1015476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046487243
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/1151659.1159940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063152170
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/1232919.1232922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030803380
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/1298306.1298346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006495452
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1145/1330107.1330127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098889045
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1145/1639562.1639597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044752965
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/347059.347557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038602566
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/378420.378440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032575216
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/65950.65957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004375823
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1145/948205.948211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032750739
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1287/mnsc.36.5.586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720703
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
173 schema:name ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN), CUBIN is an affiliated program of National ICT Australia (NICTA), Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...