Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-27

AUTHORS

Tian-Jie Xu, Ying Chen, Mao-Jie Geng, Tian-Yu Ye

ABSTRACT

In this paper, we put forward a novel single-state three-party semiquantum key agreement (SQKA) protocol with three-particle GHZ entangled states first. Different with previous quantum key agreement (QKA) protocols, the proposed single-state three-party SQKA protocol can realize the goal that a quantum party and two classical parties who only possess limited quantum capabilities equally contribute to the generation of a shared private key over quantum channels. Detailed security analysis turns out that the proposed single-state three-party SQKA protocol is secure against several famous attacks from an outside eavesdropper, such as the Trojan horse attack, the entangle-measure attack, the measure-resend attack and the intercept-resend attack. Moreover, it can resist the participant attack, which means that the shared private key cannot be determined fully by any nontrivial subset of three parties. The proposed single-state three-party SQKA protocol has the following nice features: (1) it only employs one kind of three-particle GHZ entangled states as initial quantum resource; (2) it does not need pre-shared keys among different parties; (3) it does not need unitary operations or quantum entanglement swapping. Finally, we generalize the proposed single-state three-party SQKA protocol into the case of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-party by only employing one kind of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-particle GHZ entangled states as initial quantum resource, which inherits the nice features of its three-party counterpart. More... »

PAGES

266

References to SciGraph publications

  • 2012-10-05. Multiparty quantum key agreement with single particles in QUANTUM INFORMATION PROCESSING
  • 2016-12-14. Quantum Relativity in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2021-09-14. A 15-user quantum secure direct communication network in LIGHT: SCIENCE & APPLICATIONS
  • 2011-01-29. Improvement on “Quantum Key Agreement Protocol with Maximally Entangled States” in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2015-04-15. Participant Attack on Three-party Quantum key Agreement with Two-photon Entanglement in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2020-01-28. Three-Party Semi-Quantum Key Agreement Protocol in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2018-09-22. Measure-Resend Semi-Quantum Private Comparison Without Entanglement in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2022-03-30. Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom in QUANTUM INFORMATION PROCESSING
  • 2019-05-16. Efficient semi-quantum private comparison using single photons in QUANTUM INFORMATION PROCESSING
  • 2013-07-03. Three-Party Quantum Key Agreement with Two-Photon Entanglement in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2013-07-12. Improvements on “multiparty quantum key agreement with single particles” in QUANTUM INFORMATION PROCESSING
  • 2017-07-31. Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2020-05-07. The Three-party Quantum Key Agreement Protocol with Quantum Fourier Transform in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2018-02-08. Semi-quantum Dialogue Based on Single Photons in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2015-10-24. Efficient multi-party quantum key agreement by cluster states in QUANTUM INFORMATION PROCESSING
  • 2012-07-01. Multi-party quantum key agreement with bell states and bell measurements in QUANTUM INFORMATION PROCESSING
  • 2017-05-02. Cryptanalysis and Improvement of the Semi-quantum Secret Sharing Protocol in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2016-12-18. Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states in QUANTUM INFORMATION PROCESSING
  • 2018-07-18. Three-step three-party quantum secure direct communication in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • 2015-05-16. Semiquantum key distribution without invoking the classical party’s measurement capability in QUANTUM INFORMATION PROCESSING
  • 2014-09-04. Novel multiparty quantum key agreement protocol with GHZ states in QUANTUM INFORMATION PROCESSING
  • 2017-10-26. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue in QUANTUM INFORMATION PROCESSING
  • 2015-04-03. A Novel Semi-Quantum Secret Sharing Scheme of Specific Bits in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2020-07-13. Semi-Quantum Key Distribution with Single Photons in both Polarization and Spatial-Mode Degrees of Freedom in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2016-04-18. Authenticated semi-quantum key distributions without classical channel in QUANTUM INFORMATION PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-022-03615-5

    DOI

    http://dx.doi.org/10.1007/s11128-022-03615-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149814997


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.413072.3", 
              "name": [
                "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Tian-Jie", 
            "id": "sg:person.013163131560.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163131560.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.413072.3", 
              "name": [
                "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Ying", 
            "id": "sg:person.011777366210.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777366210.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.413072.3", 
              "name": [
                "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geng", 
            "givenName": "Mao-Jie", 
            "id": "sg:person.012365551160.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365551160.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.413072.3", 
              "name": [
                "College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ye", 
            "givenName": "Tian-Yu", 
            "id": "sg:person.012266340137.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266340137.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10773-015-2622-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032646682", 
              "https://doi.org/10.1007/s10773-015-2622-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-016-1307-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015664457", 
              "https://doi.org/10.1007/s11128-016-1307-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-017-3484-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090931193", 
              "https://doi.org/10.1007/s10773-017-3484-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-016-1468-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023326327", 
              "https://doi.org/10.1007/s11128-016-1468-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-018-9224-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105703068", 
              "https://doi.org/10.1007/s11433-018-9224-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-019-04288-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124371825", 
              "https://doi.org/10.1007/s10773-019-04288-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-017-1736-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092350098", 
              "https://doi.org/10.1007/s11128-017-1736-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-013-0608-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046975351", 
              "https://doi.org/10.1007/s11128-013-0608-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-012-0443-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039587004", 
              "https://doi.org/10.1007/s11128-012-0443-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-020-04467-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127447817", 
              "https://doi.org/10.1007/s10773-020-04467-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-018-3894-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107186692", 
              "https://doi.org/10.1007/s10773-018-3894-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-015-1015-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051515326", 
              "https://doi.org/10.1007/s11128-015-1015-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-018-3672-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100919859", 
              "https://doi.org/10.1007/s10773-018-3672-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-015-1155-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009832837", 
              "https://doi.org/10.1007/s11128-015-1155-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-016-3222-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022278482", 
              "https://doi.org/10.1007/s10773-016-3222-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-013-1702-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004910947", 
              "https://doi.org/10.1007/s10773-013-1702-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-014-0816-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045956699", 
              "https://doi.org/10.1007/s11128-014-0816-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-020-04540-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129323236", 
              "https://doi.org/10.1007/s10773-020-04540-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-019-2251-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114502313", 
              "https://doi.org/10.1007/s11128-019-2251-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-011-0691-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030712391", 
              "https://doi.org/10.1007/s10773-011-0691-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-022-03457-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1146729128", 
              "https://doi.org/10.1007/s11128-022-03457-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-012-0492-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020846647", 
              "https://doi.org/10.1007/s11128-012-0492-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41377-021-00634-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141109118", 
              "https://doi.org/10.1038/s41377-021-00634-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-017-3404-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085103592", 
              "https://doi.org/10.1007/s10773-017-3404-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-015-2632-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028552423", 
              "https://doi.org/10.1007/s10773-015-2632-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-27", 
        "datePublishedReg": "2022-07-27", 
        "description": "In this paper, we put forward a novel single-state three-party semiquantum key agreement (SQKA) protocol with three-particle GHZ entangled states first. Different with previous quantum key agreement (QKA) protocols, the proposed single-state three-party SQKA protocol can realize the goal that a quantum party and two classical parties who only possess limited quantum capabilities equally contribute to the generation of a shared private key over quantum channels. Detailed security analysis turns out that the proposed single-state three-party SQKA protocol is secure against several famous attacks from an outside eavesdropper, such as the Trojan horse attack, the entangle-measure attack, the measure-resend attack and the intercept-resend attack. Moreover, it can resist the participant attack, which means that the shared private key cannot be determined fully by any nontrivial subset of three parties. The proposed single-state three-party SQKA protocol has the following nice features: (1) it only employs one kind of three-particle GHZ entangled states as initial quantum resource; (2) it does not need pre-shared keys among different parties; (3) it does not need unitary operations or quantum entanglement swapping. Finally, we generalize the proposed single-state three-party SQKA protocol into the case of N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$N$$\\end{document}-party by only employing one kind of N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$N$$\\end{document}-particle GHZ entangled states as initial quantum resource, which inherits the nice features of its three-party counterpart.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11128-022-03615-5", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8943696", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "initial quantum resource", 
          "quantum resources", 
          "quantum key agreement protocol", 
          "intercept-resend attack", 
          "measure-resend attack", 
          "entangle-measure attack", 
          "Trojan horse attacks", 
          "quantum capabilities", 
          "quantum party", 
          "entanglement swapping", 
          "quantum channel", 
          "classical parties", 
          "unitary operations", 
          "participant attack", 
          "outside eavesdropper", 
          "GHz", 
          "parties", 
          "state", 
          "different parties", 
          "swapping", 
          "pre-shared keys", 
          "nice features", 
          "resources", 
          "key agreement protocol", 
          "channels", 
          "generation", 
          "eavesdropper", 
          "famous attack", 
          "features", 
          "capability", 
          "counterparts", 
          "kind", 
          "agreement protocol", 
          "nontrivial subset", 
          "goal", 
          "security analysis", 
          "operation", 
          "key", 
          "attacks", 
          "detailed security analysis", 
          "paper", 
          "cases", 
          "analysis", 
          "protocol", 
          "private key", 
          "subset"
        ], 
        "name": "Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states", 
        "pagination": "266", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149814997"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-022-03615-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-022-03615-5", 
          "https://app.dimensions.ai/details/publication/pub.1149814997"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_931.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11128-022-03615-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03615-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03615-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03615-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03615-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      95 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-022-03615-5 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N3bd0030b0b9a4730a36669f96ba00575
    4 schema:citation sg:pub.10.1007/s10773-011-0691-4
    5 sg:pub.10.1007/s10773-013-1702-4
    6 sg:pub.10.1007/s10773-015-2622-2
    7 sg:pub.10.1007/s10773-015-2632-0
    8 sg:pub.10.1007/s10773-016-3222-5
    9 sg:pub.10.1007/s10773-017-3404-9
    10 sg:pub.10.1007/s10773-017-3484-6
    11 sg:pub.10.1007/s10773-018-3672-z
    12 sg:pub.10.1007/s10773-018-3894-0
    13 sg:pub.10.1007/s10773-019-04288-0
    14 sg:pub.10.1007/s10773-020-04467-4
    15 sg:pub.10.1007/s10773-020-04540-y
    16 sg:pub.10.1007/s11128-012-0443-2
    17 sg:pub.10.1007/s11128-012-0492-6
    18 sg:pub.10.1007/s11128-013-0608-7
    19 sg:pub.10.1007/s11128-014-0816-9
    20 sg:pub.10.1007/s11128-015-1015-z
    21 sg:pub.10.1007/s11128-015-1155-1
    22 sg:pub.10.1007/s11128-016-1307-y
    23 sg:pub.10.1007/s11128-016-1468-8
    24 sg:pub.10.1007/s11128-017-1736-2
    25 sg:pub.10.1007/s11128-019-2251-4
    26 sg:pub.10.1007/s11128-022-03457-1
    27 sg:pub.10.1007/s11433-018-9224-5
    28 sg:pub.10.1038/s41377-021-00634-2
    29 schema:datePublished 2022-07-27
    30 schema:datePublishedReg 2022-07-27
    31 schema:description In this paper, we put forward a novel single-state three-party semiquantum key agreement (SQKA) protocol with three-particle GHZ entangled states first. Different with previous quantum key agreement (QKA) protocols, the proposed single-state three-party SQKA protocol can realize the goal that a quantum party and two classical parties who only possess limited quantum capabilities equally contribute to the generation of a shared private key over quantum channels. Detailed security analysis turns out that the proposed single-state three-party SQKA protocol is secure against several famous attacks from an outside eavesdropper, such as the Trojan horse attack, the entangle-measure attack, the measure-resend attack and the intercept-resend attack. Moreover, it can resist the participant attack, which means that the shared private key cannot be determined fully by any nontrivial subset of three parties. The proposed single-state three-party SQKA protocol has the following nice features: (1) it only employs one kind of three-particle GHZ entangled states as initial quantum resource; (2) it does not need pre-shared keys among different parties; (3) it does not need unitary operations or quantum entanglement swapping. Finally, we generalize the proposed single-state three-party SQKA protocol into the case of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-party by only employing one kind of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-particle GHZ entangled states as initial quantum resource, which inherits the nice features of its three-party counterpart.
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N5d953eae024c42139b9173dea786f2e6
    35 Nbc7d3a86c6c949d085e0abf17bbd05ed
    36 sg:journal.1052742
    37 schema:keywords GHz
    38 Trojan horse attacks
    39 agreement protocol
    40 analysis
    41 attacks
    42 capability
    43 cases
    44 channels
    45 classical parties
    46 counterparts
    47 detailed security analysis
    48 different parties
    49 eavesdropper
    50 entangle-measure attack
    51 entanglement swapping
    52 famous attack
    53 features
    54 generation
    55 goal
    56 initial quantum resource
    57 intercept-resend attack
    58 key
    59 key agreement protocol
    60 kind
    61 measure-resend attack
    62 nice features
    63 nontrivial subset
    64 operation
    65 outside eavesdropper
    66 paper
    67 participant attack
    68 parties
    69 pre-shared keys
    70 private key
    71 protocol
    72 quantum capabilities
    73 quantum channel
    74 quantum key agreement protocol
    75 quantum party
    76 quantum resources
    77 resources
    78 security analysis
    79 state
    80 subset
    81 swapping
    82 unitary operations
    83 schema:name Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states
    84 schema:pagination 266
    85 schema:productId N2d9c544614f84dd7b1748980e9747eef
    86 N2fe30d55c9594c7eb38744e84b1c06ee
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149814997
    88 https://doi.org/10.1007/s11128-022-03615-5
    89 schema:sdDatePublished 2022-10-01T06:50
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N04db89b92b1f434d8c87958ca6765904
    92 schema:url https://doi.org/10.1007/s11128-022-03615-5
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N04db89b92b1f434d8c87958ca6765904 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N2d9c544614f84dd7b1748980e9747eef schema:name dimensions_id
    99 schema:value pub.1149814997
    100 rdf:type schema:PropertyValue
    101 N2fe30d55c9594c7eb38744e84b1c06ee schema:name doi
    102 schema:value 10.1007/s11128-022-03615-5
    103 rdf:type schema:PropertyValue
    104 N3bd0030b0b9a4730a36669f96ba00575 rdf:first sg:person.013163131560.64
    105 rdf:rest N93eeb7e09a6e43f7a4c1be3e9f8d9bff
    106 N5d953eae024c42139b9173dea786f2e6 schema:issueNumber 7
    107 rdf:type schema:PublicationIssue
    108 N84f1f9696468461da152bcf7c5ae0574 rdf:first sg:person.012365551160.60
    109 rdf:rest N88607f700df44dd99a4f81c213c9ea61
    110 N88607f700df44dd99a4f81c213c9ea61 rdf:first sg:person.012266340137.32
    111 rdf:rest rdf:nil
    112 N93eeb7e09a6e43f7a4c1be3e9f8d9bff rdf:first sg:person.011777366210.48
    113 rdf:rest N84f1f9696468461da152bcf7c5ae0574
    114 Nbc7d3a86c6c949d085e0abf17bbd05ed schema:volumeNumber 21
    115 rdf:type schema:PublicationVolume
    116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Physical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Quantum Physics
    121 rdf:type schema:DefinedTerm
    122 sg:grant.8943696 http://pending.schema.org/fundedItem sg:pub.10.1007/s11128-022-03615-5
    123 rdf:type schema:MonetaryGrant
    124 sg:journal.1052742 schema:issn 1570-0755
    125 1573-1332
    126 schema:name Quantum Information Processing
    127 schema:publisher Springer Nature
    128 rdf:type schema:Periodical
    129 sg:person.011777366210.48 schema:affiliation grid-institutes:grid.413072.3
    130 schema:familyName Chen
    131 schema:givenName Ying
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777366210.48
    133 rdf:type schema:Person
    134 sg:person.012266340137.32 schema:affiliation grid-institutes:grid.413072.3
    135 schema:familyName Ye
    136 schema:givenName Tian-Yu
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266340137.32
    138 rdf:type schema:Person
    139 sg:person.012365551160.60 schema:affiliation grid-institutes:grid.413072.3
    140 schema:familyName Geng
    141 schema:givenName Mao-Jie
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365551160.60
    143 rdf:type schema:Person
    144 sg:person.013163131560.64 schema:affiliation grid-institutes:grid.413072.3
    145 schema:familyName Xu
    146 schema:givenName Tian-Jie
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163131560.64
    148 rdf:type schema:Person
    149 sg:pub.10.1007/s10773-011-0691-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030712391
    150 https://doi.org/10.1007/s10773-011-0691-4
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10773-013-1702-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004910947
    153 https://doi.org/10.1007/s10773-013-1702-4
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10773-015-2622-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032646682
    156 https://doi.org/10.1007/s10773-015-2622-2
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10773-015-2632-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028552423
    159 https://doi.org/10.1007/s10773-015-2632-0
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10773-016-3222-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022278482
    162 https://doi.org/10.1007/s10773-016-3222-5
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10773-017-3404-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085103592
    165 https://doi.org/10.1007/s10773-017-3404-9
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10773-017-3484-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090931193
    168 https://doi.org/10.1007/s10773-017-3484-6
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10773-018-3672-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100919859
    171 https://doi.org/10.1007/s10773-018-3672-z
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s10773-018-3894-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186692
    174 https://doi.org/10.1007/s10773-018-3894-0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s10773-019-04288-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124371825
    177 https://doi.org/10.1007/s10773-019-04288-0
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10773-020-04467-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127447817
    180 https://doi.org/10.1007/s10773-020-04467-4
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s10773-020-04540-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1129323236
    183 https://doi.org/10.1007/s10773-020-04540-y
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s11128-012-0443-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039587004
    186 https://doi.org/10.1007/s11128-012-0443-2
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s11128-012-0492-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020846647
    189 https://doi.org/10.1007/s11128-012-0492-6
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s11128-013-0608-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046975351
    192 https://doi.org/10.1007/s11128-013-0608-7
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s11128-014-0816-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045956699
    195 https://doi.org/10.1007/s11128-014-0816-9
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11128-015-1015-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051515326
    198 https://doi.org/10.1007/s11128-015-1015-z
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11128-015-1155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009832837
    201 https://doi.org/10.1007/s11128-015-1155-1
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s11128-016-1307-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015664457
    204 https://doi.org/10.1007/s11128-016-1307-y
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s11128-016-1468-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023326327
    207 https://doi.org/10.1007/s11128-016-1468-8
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s11128-017-1736-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092350098
    210 https://doi.org/10.1007/s11128-017-1736-2
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s11128-019-2251-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114502313
    213 https://doi.org/10.1007/s11128-019-2251-4
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11128-022-03457-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146729128
    216 https://doi.org/10.1007/s11128-022-03457-1
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s11433-018-9224-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105703068
    219 https://doi.org/10.1007/s11433-018-9224-5
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s41377-021-00634-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141109118
    222 https://doi.org/10.1038/s41377-021-00634-2
    223 rdf:type schema:CreativeWork
    224 grid-institutes:grid.413072.3 schema:alternateName College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People’s Republic of China
    225 schema:name College of Information & Electronic Engineering, Zhejiang Gongshang University, 310018, Hangzhou, People’s Republic of China
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...