NMR Hamiltonian as an effective Hamiltonian to generate Schrödinger’s cat states View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-26

AUTHORS

A. Consuelo-Leal, A. G. Araujo-Ferreira, E. L. G. Vidoto, E. Lucas-Oliveira, T. J. Bonagamba, R. Auccaise

ABSTRACT

This report experimentally demonstrates that the theoretical background of the atom–field scenario points out that the NMR quadrupolar Hamiltonian works as an effective Hamiltonian to generate Schrödinger’s cat states in a 2I+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2I+1$$\end{document} low-dimensional Hilbert space. The versatility of this nuclear spin setup is verified by monitoring the 23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{23}$$\end{document}Na nucleus of a lyotropic liquid crystal sample at the nematic phase. The quantum state tomography and the Wigner quasiprobability distribution function are performed to characterize the accuracy of the experimental implementation. More... »

PAGES

265

References to SciGraph publications

  • 2013-06-27. Spin coherent states in NMR quadrupolar system: experimental and theoretical applications in THE EUROPEAN PHYSICAL JOURNAL D
  • 2014-04-09. Nanophotonic quantum phase switch with a single atom in NATURE
  • 2005-04. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device in NATURE
  • 2018-06-09. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance in QUANTUM INFORMATION PROCESSING
  • 2018-03-15. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor in NATURE
  • 2008-09. Reconstruction of non-classical cavity field states with snapshots of their decoherence in NATURE
  • 2010-03-14. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state in NATURE PHYSICS
  • 2013-01-29. Composite-pulse magnetometry with a solid-state quantum sensor in NATURE COMMUNICATIONS
  • 2019-01-14. Deterministic creation of entangled atom–light Schrödinger-cat states in NATURE PHOTONICS
  • 2015-03-19. Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance in QUANTUM INFORMATION PROCESSING
  • 1986. Generalized Coherent States and Their Applications in NONE
  • 2011-02-23. An open-system quantum simulator with trapped ions in NATURE
  • 2007-08-16. Generation of optical ‘Schrödinger cats’ from photon number states in NATURE
  • 2005-12. Creation of a six-atom ‘Schrödinger cat’ state in NATURE
  • 2021-03-24. A four-qubit germanium quantum processor in NATURE
  • 1997-12-01. Experimental quantum teleportation in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-022-03608-4

    DOI

    http://dx.doi.org/10.1007/s11128-022-03608-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149815360


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Consuelo-Leal", 
            "givenName": "A.", 
            "id": "sg:person.013507712063.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507712063.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Araujo-Ferreira", 
            "givenName": "A. G.", 
            "id": "sg:person.016401101134.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401101134.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vidoto", 
            "givenName": "E. L. G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lucas-Oliveira", 
            "givenName": "E.", 
            "id": "sg:person.015603520534.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015603520534.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de F\u00edsica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, CP 369, 13560-970, S\u00e3o Carlos, S\u00e3o Paulo, Brasil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonagamba", 
            "givenName": "T. J.", 
            "id": "sg:person.0661341360.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661341360.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica, Universidade Estadual de Ponta, Grossa, Av. Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, Paran\u00e1, Brasil", 
              "id": "http://www.grid.ac/institutes/grid.412323.5", 
              "name": [
                "Departamento de F\u00edsica, Universidade Estadual de Ponta, Grossa, Av. Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, Paran\u00e1, Brasil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Auccaise", 
            "givenName": "R.", 
            "id": "sg:person.0733007047.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733007047.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41586-021-03332-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136625272", 
              "https://doi.org/10.1038/s41586-021-03332-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2013-30689-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025017417", 
              "https://doi.org/10.1140/epjd/e2013-30689-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029943690", 
              "https://doi.org/10.1038/nature03456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011334577", 
              "https://doi.org/10.1038/nature06054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013090783", 
              "https://doi.org/10.1038/nature04251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101519241", 
              "https://doi.org/10.1038/nature25781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002657890", 
              "https://doi.org/10.1038/nature13188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002636379", 
              "https://doi.org/10.1038/nature09801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016694846", 
              "https://doi.org/10.1038/ncomms2375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61629-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005219864", 
              "https://doi.org/10.1007/978-3-642-61629-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-018-1947-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104476338", 
              "https://doi.org/10.1007/s11128-018-1947-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-015-0967-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025530624", 
              "https://doi.org/10.1007/s11128-015-0967-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/37539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048717910", 
              "https://doi.org/10.1038/37539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018429633", 
              "https://doi.org/10.1038/nature07288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41566-018-0339-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111164797", 
              "https://doi.org/10.1038/s41566-018-0339-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026823311", 
              "https://doi.org/10.1038/nphys1603"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-26", 
        "datePublishedReg": "2022-07-26", 
        "description": "This report experimentally demonstrates that the theoretical background of the atom\u2013field scenario points out that the NMR quadrupolar Hamiltonian works as an effective Hamiltonian to generate Schr\u00f6dinger\u2019s cat states in a 2I+1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2I+1$$\\end{document} low-dimensional Hilbert space. The versatility of this nuclear spin setup is verified by monitoring the 23\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{23}$$\\end{document}Na nucleus of a lyotropic liquid crystal sample at the nematic phase. The quantum state tomography and the Wigner quasiprobability distribution function are performed to characterize the accuracy of the experimental implementation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11128-022-03608-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4484802", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "cat states", 
          "Wigner quasiprobability distribution function", 
          "effective Hamiltonian", 
          "quantum state tomography", 
          "low-dimensional Hilbert spaces", 
          "Schr\u00f6dinger cat states", 
          "quasiprobability distribution functions", 
          "state tomography", 
          "liquid crystal sample", 
          "Schr\u00f6dinger cat", 
          "SPIN setup", 
          "NMR Hamiltonian", 
          "crystal samples", 
          "experimental implementation", 
          "Hamiltonian", 
          "distribution function", 
          "nematic phase", 
          "Hilbert space", 
          "quadrupolar", 
          "setup", 
          "nucleus", 
          "theoretical background", 
          "state", 
          "phase", 
          "versatility", 
          "space", 
          "tomography", 
          "samples", 
          "function", 
          "scenarios", 
          "accuracy", 
          "background", 
          "implementation", 
          "report", 
          "cats"
        ], 
        "name": "NMR Hamiltonian as an effective Hamiltonian to generate Schr\u00f6dinger\u2019s cat states", 
        "pagination": "265", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149815360"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-022-03608-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-022-03608-4", 
          "https://app.dimensions.ai/details/publication/pub.1149815360"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_953.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11128-022-03608-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03608-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03608-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03608-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03608-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      75 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-022-03608-4 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N315d4669723f4105be35020a63390e28
    4 schema:citation sg:pub.10.1007/978-3-642-61629-7
    5 sg:pub.10.1007/s11128-015-0967-3
    6 sg:pub.10.1007/s11128-018-1947-1
    7 sg:pub.10.1038/37539
    8 sg:pub.10.1038/nature03456
    9 sg:pub.10.1038/nature04251
    10 sg:pub.10.1038/nature06054
    11 sg:pub.10.1038/nature07288
    12 sg:pub.10.1038/nature09801
    13 sg:pub.10.1038/nature13188
    14 sg:pub.10.1038/nature25781
    15 sg:pub.10.1038/ncomms2375
    16 sg:pub.10.1038/nphys1603
    17 sg:pub.10.1038/s41566-018-0339-5
    18 sg:pub.10.1038/s41586-021-03332-6
    19 sg:pub.10.1140/epjd/e2013-30689-1
    20 schema:datePublished 2022-07-26
    21 schema:datePublishedReg 2022-07-26
    22 schema:description This report experimentally demonstrates that the theoretical background of the atom–field scenario points out that the NMR quadrupolar Hamiltonian works as an effective Hamiltonian to generate Schrödinger’s cat states in a 2I+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2I+1$$\end{document} low-dimensional Hilbert space. The versatility of this nuclear spin setup is verified by monitoring the 23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{23}$$\end{document}Na nucleus of a lyotropic liquid crystal sample at the nematic phase. The quantum state tomography and the Wigner quasiprobability distribution function are performed to characterize the accuracy of the experimental implementation.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf Nc3a5b52f033148c4a77c295e83f0825d
    26 Ndf5bbc2936424d6d9c26d447f96b415b
    27 sg:journal.1052742
    28 schema:keywords Hamiltonian
    29 Hilbert space
    30 NMR Hamiltonian
    31 SPIN setup
    32 Schrödinger cat
    33 Schrödinger cat states
    34 Wigner quasiprobability distribution function
    35 accuracy
    36 background
    37 cat states
    38 cats
    39 crystal samples
    40 distribution function
    41 effective Hamiltonian
    42 experimental implementation
    43 function
    44 implementation
    45 liquid crystal sample
    46 low-dimensional Hilbert spaces
    47 nematic phase
    48 nucleus
    49 phase
    50 quadrupolar
    51 quantum state tomography
    52 quasiprobability distribution functions
    53 report
    54 samples
    55 scenarios
    56 setup
    57 space
    58 state
    59 state tomography
    60 theoretical background
    61 tomography
    62 versatility
    63 schema:name NMR Hamiltonian as an effective Hamiltonian to generate Schrödinger’s cat states
    64 schema:pagination 265
    65 schema:productId N4e08c3cf7a044ca29389e9db89e64ba7
    66 Ne11d9c31a13742eb9454eef5cce08df1
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149815360
    68 https://doi.org/10.1007/s11128-022-03608-4
    69 schema:sdDatePublished 2022-09-02T16:07
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Nf1f63d0812f34a14a9c6f174154c3e8c
    72 schema:url https://doi.org/10.1007/s11128-022-03608-4
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N23015c9e07184ecc9e28c02d5b70a856 rdf:first sg:person.0733007047.28
    77 rdf:rest rdf:nil
    78 N29aa8d003687421a9b7866140f01630f rdf:first sg:person.016401101134.41
    79 rdf:rest Nbf918f327aea4d8eb8c3984acb587411
    80 N315d4669723f4105be35020a63390e28 rdf:first sg:person.013507712063.75
    81 rdf:rest N29aa8d003687421a9b7866140f01630f
    82 N340b57ac953a4b5b83ee08f0daf9861f rdf:first sg:person.0661341360.18
    83 rdf:rest N23015c9e07184ecc9e28c02d5b70a856
    84 N4e08c3cf7a044ca29389e9db89e64ba7 schema:name doi
    85 schema:value 10.1007/s11128-022-03608-4
    86 rdf:type schema:PropertyValue
    87 Na7ad71f53f3042488100cbc2eba4d754 schema:affiliation grid-institutes:grid.11899.38
    88 schema:familyName Vidoto
    89 schema:givenName E. L. G.
    90 rdf:type schema:Person
    91 Nbf918f327aea4d8eb8c3984acb587411 rdf:first Na7ad71f53f3042488100cbc2eba4d754
    92 rdf:rest Nf6a61b8fa71340eaaf5db7a7b020bcce
    93 Nc3a5b52f033148c4a77c295e83f0825d schema:issueNumber 7
    94 rdf:type schema:PublicationIssue
    95 Ndf5bbc2936424d6d9c26d447f96b415b schema:volumeNumber 21
    96 rdf:type schema:PublicationVolume
    97 Ne11d9c31a13742eb9454eef5cce08df1 schema:name dimensions_id
    98 schema:value pub.1149815360
    99 rdf:type schema:PropertyValue
    100 Nf1f63d0812f34a14a9c6f174154c3e8c schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 Nf6a61b8fa71340eaaf5db7a7b020bcce rdf:first sg:person.015603520534.61
    103 rdf:rest N340b57ac953a4b5b83ee08f0daf9861f
    104 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Physical Sciences
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    109 rdf:type schema:DefinedTerm
    110 sg:grant.4484802 http://pending.schema.org/fundedItem sg:pub.10.1007/s11128-022-03608-4
    111 rdf:type schema:MonetaryGrant
    112 sg:journal.1052742 schema:issn 1570-0755
    113 1573-1332
    114 schema:name Quantum Information Processing
    115 schema:publisher Springer Nature
    116 rdf:type schema:Periodical
    117 sg:person.013507712063.75 schema:affiliation grid-institutes:grid.11899.38
    118 schema:familyName Consuelo-Leal
    119 schema:givenName A.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507712063.75
    121 rdf:type schema:Person
    122 sg:person.015603520534.61 schema:affiliation grid-institutes:grid.11899.38
    123 schema:familyName Lucas-Oliveira
    124 schema:givenName E.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015603520534.61
    126 rdf:type schema:Person
    127 sg:person.016401101134.41 schema:affiliation grid-institutes:grid.11899.38
    128 schema:familyName Araujo-Ferreira
    129 schema:givenName A. G.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401101134.41
    131 rdf:type schema:Person
    132 sg:person.0661341360.18 schema:affiliation grid-institutes:grid.11899.38
    133 schema:familyName Bonagamba
    134 schema:givenName T. J.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661341360.18
    136 rdf:type schema:Person
    137 sg:person.0733007047.28 schema:affiliation grid-institutes:grid.412323.5
    138 schema:familyName Auccaise
    139 schema:givenName R.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733007047.28
    141 rdf:type schema:Person
    142 sg:pub.10.1007/978-3-642-61629-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005219864
    143 https://doi.org/10.1007/978-3-642-61629-7
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s11128-015-0967-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025530624
    146 https://doi.org/10.1007/s11128-015-0967-3
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s11128-018-1947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476338
    149 https://doi.org/10.1007/s11128-018-1947-1
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/37539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048717910
    152 https://doi.org/10.1038/37539
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nature03456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029943690
    155 https://doi.org/10.1038/nature03456
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nature04251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013090783
    158 https://doi.org/10.1038/nature04251
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nature06054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011334577
    161 https://doi.org/10.1038/nature06054
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nature07288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018429633
    164 https://doi.org/10.1038/nature07288
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nature09801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002636379
    167 https://doi.org/10.1038/nature09801
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nature13188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002657890
    170 https://doi.org/10.1038/nature13188
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature25781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101519241
    173 https://doi.org/10.1038/nature25781
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/ncomms2375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016694846
    176 https://doi.org/10.1038/ncomms2375
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nphys1603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026823311
    179 https://doi.org/10.1038/nphys1603
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/s41566-018-0339-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111164797
    182 https://doi.org/10.1038/s41566-018-0339-5
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/s41586-021-03332-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136625272
    185 https://doi.org/10.1038/s41586-021-03332-6
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1140/epjd/e2013-30689-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025017417
    188 https://doi.org/10.1140/epjd/e2013-30689-1
    189 rdf:type schema:CreativeWork
    190 grid-institutes:grid.11899.38 schema:alternateName Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, São Paulo, Brasil
    191 schema:name Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, São Paulo, Brasil
    192 rdf:type schema:Organization
    193 grid-institutes:grid.412323.5 schema:alternateName Departamento de Física, Universidade Estadual de Ponta, Grossa, Av. Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, Paraná, Brasil
    194 schema:name Departamento de Física, Universidade Estadual de Ponta, Grossa, Av. Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, Paraná, Brasil
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...