Quantum linear system algorithm applied to communication systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-28

AUTHORS

Jeonghoon Park, Jun Heo

ABSTRACT

A quantum linear system algorithm (QLSA) can solve linear equations more efficiently than classical ones. However, we cannot know the value of each component of a solution directly because a QLSA produces a solution as a quantum state. In this paper, we present a method to obtain classical information of a solution with the exponential quantum advantage of a QLSA when the values of a solution are on a rectangular grid in the complex plane. Our method can extract both the amplitude and phase information by modifying the given matrix. Moreover, we show an application to a specific problem in communication systems. More... »

PAGES

267

References to SciGraph publications

  • 2020-01-09. Amplitude estimation without phase estimation in QUANTUM INFORMATION PROCESSING
  • 2021-03-19. Iterative quantum amplitude estimation in NPJ QUANTUM INFORMATION
  • 2015-04-02. Read the fine print in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-022-03598-3

    DOI

    http://dx.doi.org/10.1007/s11128-022-03598-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149821694


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Research Institute for Information and Communication Technology, Korea University, 02841, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "Research Institute for Information and Communication Technology, Korea University, 02841, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Jeonghoon", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Electrical Engineering, Korea University, 02841, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "School of Electrical Engineering, Korea University, 02841, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heo", 
            "givenName": "Jun", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys3272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021586000", 
              "https://doi.org/10.1038/nphys3272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41534-021-00379-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136502480", 
              "https://doi.org/10.1038/s41534-021-00379-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-019-2565-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123980018", 
              "https://doi.org/10.1007/s11128-019-2565-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-28", 
        "datePublishedReg": "2022-07-28", 
        "description": "A quantum linear system algorithm (QLSA) can solve linear equations more efficiently than classical ones. However, we cannot know the value of each component of a solution directly because a QLSA produces a solution as a quantum state. In this paper, we present a method to obtain classical information of a solution with the exponential quantum advantage of a QLSA when the values of a solution are on a rectangular grid in the complex plane. Our method can extract both the amplitude and phase information by modifying the given matrix. Moreover, we show an application to a specific problem in communication systems.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11128-022-03598-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "quantum linear system algorithm", 
          "quantum advantage", 
          "quantum states", 
          "classical information", 
          "linear equations", 
          "complex plane", 
          "system algorithm", 
          "rectangular grid", 
          "classical ones", 
          "communication systems", 
          "solution", 
          "specific problems", 
          "algorithm", 
          "equations", 
          "grid", 
          "plane", 
          "problem", 
          "system", 
          "amplitude", 
          "matrix", 
          "state", 
          "applications", 
          "one", 
          "values", 
          "method", 
          "advantages", 
          "information", 
          "components", 
          "paper"
        ], 
        "name": "Quantum linear system algorithm applied to communication systems", 
        "pagination": "267", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149821694"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-022-03598-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-022-03598-3", 
          "https://app.dimensions.ai/details/publication/pub.1149821694"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_948.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11128-022-03598-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03598-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03598-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03598-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03598-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      21 PREDICATES      56 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-022-03598-3 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N404f23c4c0904db79d71f6d30eeaa4e7
    4 schema:citation sg:pub.10.1007/s11128-019-2565-2
    5 sg:pub.10.1038/nphys3272
    6 sg:pub.10.1038/s41534-021-00379-1
    7 schema:datePublished 2022-07-28
    8 schema:datePublishedReg 2022-07-28
    9 schema:description A quantum linear system algorithm (QLSA) can solve linear equations more efficiently than classical ones. However, we cannot know the value of each component of a solution directly because a QLSA produces a solution as a quantum state. In this paper, we present a method to obtain classical information of a solution with the exponential quantum advantage of a QLSA when the values of a solution are on a rectangular grid in the complex plane. Our method can extract both the amplitude and phase information by modifying the given matrix. Moreover, we show an application to a specific problem in communication systems.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N6339b67d659c48a783f70b75468974b4
    13 N87846589da2245e7aef3e95e8ac6b092
    14 sg:journal.1052742
    15 schema:keywords advantages
    16 algorithm
    17 amplitude
    18 applications
    19 classical information
    20 classical ones
    21 communication systems
    22 complex plane
    23 components
    24 equations
    25 grid
    26 information
    27 linear equations
    28 matrix
    29 method
    30 one
    31 paper
    32 plane
    33 problem
    34 quantum advantage
    35 quantum linear system algorithm
    36 quantum states
    37 rectangular grid
    38 solution
    39 specific problems
    40 state
    41 system
    42 system algorithm
    43 values
    44 schema:name Quantum linear system algorithm applied to communication systems
    45 schema:pagination 267
    46 schema:productId N296a75d591664644867c8522f0a9006e
    47 N4450992da48e47f3bc00d2093513c515
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149821694
    49 https://doi.org/10.1007/s11128-022-03598-3
    50 schema:sdDatePublished 2022-09-02T16:08
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Neea39fe226114412862035a18ea95f35
    53 schema:url https://doi.org/10.1007/s11128-022-03598-3
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N1b0089e6f3e845f7884dd31f80aec291 rdf:first N9655b0bdd3b64cab83ccb5eb72b6ecfc
    58 rdf:rest rdf:nil
    59 N296a75d591664644867c8522f0a9006e schema:name doi
    60 schema:value 10.1007/s11128-022-03598-3
    61 rdf:type schema:PropertyValue
    62 N404f23c4c0904db79d71f6d30eeaa4e7 rdf:first N65c92fa0f2db4743b94f5759b31ff4ed
    63 rdf:rest N1b0089e6f3e845f7884dd31f80aec291
    64 N4450992da48e47f3bc00d2093513c515 schema:name dimensions_id
    65 schema:value pub.1149821694
    66 rdf:type schema:PropertyValue
    67 N6339b67d659c48a783f70b75468974b4 schema:issueNumber 7
    68 rdf:type schema:PublicationIssue
    69 N65c92fa0f2db4743b94f5759b31ff4ed schema:affiliation grid-institutes:grid.222754.4
    70 schema:familyName Park
    71 schema:givenName Jeonghoon
    72 rdf:type schema:Person
    73 N87846589da2245e7aef3e95e8ac6b092 schema:volumeNumber 21
    74 rdf:type schema:PublicationVolume
    75 N9655b0bdd3b64cab83ccb5eb72b6ecfc schema:affiliation grid-institutes:grid.222754.4
    76 schema:familyName Heo
    77 schema:givenName Jun
    78 rdf:type schema:Person
    79 Neea39fe226114412862035a18ea95f35 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Physical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Quantum Physics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1052742 schema:issn 1570-0755
    88 1573-1332
    89 schema:name Quantum Information Processing
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:pub.10.1007/s11128-019-2565-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123980018
    93 https://doi.org/10.1007/s11128-019-2565-2
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1038/nphys3272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021586000
    96 https://doi.org/10.1038/nphys3272
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1038/s41534-021-00379-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136502480
    99 https://doi.org/10.1038/s41534-021-00379-1
    100 rdf:type schema:CreativeWork
    101 grid-institutes:grid.222754.4 schema:alternateName Research Institute for Information and Communication Technology, Korea University, 02841, Seoul, Korea
    102 School of Electrical Engineering, Korea University, 02841, Seoul, Korea
    103 schema:name Research Institute for Information and Communication Technology, Korea University, 02841, Seoul, Korea
    104 School of Electrical Engineering, Korea University, 02841, Seoul, Korea
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...