Secure communications based on sending-or-not-sending strategy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

Lu Liu, Bo Lu, Jun-Yang Song, Chuan Wang

ABSTRACT

Recently, there are various schemes of quantum secure direct communications that have been studied. Most of these protocols commit themselves to accomplishing two goals: increasing the coding rate and expanding the range of quantum direct communications. Here in this study, a quantum secure communication protocol using the sending-or-not-sending strategy is proposed, which significantly enhances the communication distance. Numerical simulation results show that although the misalignment error eopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{opt}$$\end{document} increases as large as 45%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45\%$$\end{document}, the protocol can still achieve a distance of approximately 350 km. Although the long-distance single-photon inference is involved in decoy windows, it is not required to use this technology in signal windows established for secret message transmission. Moreover, the security of the protocol against collective attacks is analyzed based on Wyner’s wiretap channel theory. More... »

PAGES

250

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-022-03584-9

DOI

http://dx.doi.org/10.1007/s11128-022-03584-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149788384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Bo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Jun-Yang", 
        "id": "sg:person.011133450330.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011133450330.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chuan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41377-022-00769-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1146916464", 
          "https://doi.org/10.1038/s41377-022-00769-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2016.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029812225", 
          "https://doi.org/10.1038/lsa.2016.144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11467-007-0050-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021119742", 
          "https://doi.org/10.1007/s11467-007-0050-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-019-1450-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123465747", 
          "https://doi.org/10.1007/s11433-019-1450-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-020-2955-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1133099436", 
          "https://doi.org/10.1007/s11432-020-2955-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0066-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103702821", 
          "https://doi.org/10.1038/s41586-018-0066-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s43673-021-00017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138866782", 
          "https://doi.org/10.1007/s43673-021-00017-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-021-00634-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1141109118", 
          "https://doi.org/10.1038/s41377-021-00634-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-019-0132-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111914157", 
          "https://doi.org/10.1038/s41377-019-0132-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-019-2494-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122678760", 
          "https://doi.org/10.1007/s11128-019-2494-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-26", 
    "datePublishedReg": "2022-07-26", 
    "description": "Recently, there are various schemes of quantum secure direct communications that have been studied. Most of these protocols commit themselves to accomplishing two goals: increasing the coding rate and expanding the range of quantum direct communications. Here in this study, a quantum secure communication protocol using the sending-or-not-sending strategy is proposed, which significantly enhances the communication distance. Numerical simulation results show that although the misalignment error eopt\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$e_{opt}$$\\end{document} increases as large as 45%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$45\\%$$\\end{document}, the protocol can still achieve a distance of approximately 350\u00a0km. Although the long-distance single-photon inference is involved in decoy windows, it is not required to use this technology in signal windows established for secret message transmission. Moreover, the security of the protocol against collective attacks is analyzed based on Wyner\u2019s wiretap channel theory.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11128-022-03584-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "quantum secure direct communication", 
      "quantum secure communication protocol", 
      "secure direct communication", 
      "quantum direct communication", 
      "collective attacks", 
      "secure communication protocol", 
      "direct communication", 
      "communication distance", 
      "communication protocols", 
      "secure communication", 
      "message transmission", 
      "misalignment errors", 
      "channel theory", 
      "communication", 
      "simulation results", 
      "protocol", 
      "signal window", 
      "numerical simulation results", 
      "distance", 
      "window", 
      "transmission", 
      "technology", 
      "theory", 
      "range", 
      "scheme", 
      "security", 
      "secret message transmission", 
      "strategies", 
      "attacks", 
      "error", 
      "results", 
      "increase", 
      "rate", 
      "goal", 
      "study", 
      "inference"
    ], 
    "name": "Secure communications based on sending-or-not-sending strategy", 
    "pagination": "250", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149788384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-022-03584-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-022-03584-9", 
      "https://app.dimensions.ai/details/publication/pub.1149788384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_954.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11128-022-03584-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03584-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03584-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03584-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03584-9'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      72 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-022-03584-9 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 anzsrc-for:08
4 anzsrc-for:0804
5 schema:author N37977d913ab94f0aa70ad9b27bddbfe8
6 schema:citation sg:pub.10.1007/s11128-019-2494-0
7 sg:pub.10.1007/s11432-020-2955-6
8 sg:pub.10.1007/s11433-019-1450-8
9 sg:pub.10.1007/s11467-007-0050-3
10 sg:pub.10.1007/s43673-021-00017-0
11 sg:pub.10.1038/lsa.2016.144
12 sg:pub.10.1038/s41377-019-0132-3
13 sg:pub.10.1038/s41377-021-00634-2
14 sg:pub.10.1038/s41377-022-00769-w
15 sg:pub.10.1038/s41586-018-0066-6
16 schema:datePublished 2022-07-26
17 schema:datePublishedReg 2022-07-26
18 schema:description Recently, there are various schemes of quantum secure direct communications that have been studied. Most of these protocols commit themselves to accomplishing two goals: increasing the coding rate and expanding the range of quantum direct communications. Here in this study, a quantum secure communication protocol using the sending-or-not-sending strategy is proposed, which significantly enhances the communication distance. Numerical simulation results show that although the misalignment error eopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{opt}$$\end{document} increases as large as 45%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45\%$$\end{document}, the protocol can still achieve a distance of approximately 350 km. Although the long-distance single-photon inference is involved in decoy windows, it is not required to use this technology in signal windows established for secret message transmission. Moreover, the security of the protocol against collective attacks is analyzed based on Wyner’s wiretap channel theory.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N11efb8a8f4c64a66bcca435256feaf78
22 N3690181de4fb4f7c9b1124eaa5b00f3d
23 sg:journal.1052742
24 schema:keywords attacks
25 channel theory
26 collective attacks
27 communication
28 communication distance
29 communication protocols
30 direct communication
31 distance
32 error
33 goal
34 increase
35 inference
36 message transmission
37 misalignment errors
38 numerical simulation results
39 protocol
40 quantum direct communication
41 quantum secure communication protocol
42 quantum secure direct communication
43 range
44 rate
45 results
46 scheme
47 secret message transmission
48 secure communication
49 secure communication protocol
50 secure direct communication
51 security
52 signal window
53 simulation results
54 strategies
55 study
56 technology
57 theory
58 transmission
59 window
60 schema:name Secure communications based on sending-or-not-sending strategy
61 schema:pagination 250
62 schema:productId N046b0c458f624c48a41f3da84d8524f1
63 N2b551c2a5ce24dc7a150156cf129d49e
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149788384
65 https://doi.org/10.1007/s11128-022-03584-9
66 schema:sdDatePublished 2022-11-24T21:10
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nb7eb9f8f05dd41f4806ae36b8cd4ed31
69 schema:url https://doi.org/10.1007/s11128-022-03584-9
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N046b0c458f624c48a41f3da84d8524f1 schema:name dimensions_id
74 schema:value pub.1149788384
75 rdf:type schema:PropertyValue
76 N11efb8a8f4c64a66bcca435256feaf78 schema:issueNumber 7
77 rdf:type schema:PublicationIssue
78 N2b551c2a5ce24dc7a150156cf129d49e schema:name doi
79 schema:value 10.1007/s11128-022-03584-9
80 rdf:type schema:PropertyValue
81 N3690181de4fb4f7c9b1124eaa5b00f3d schema:volumeNumber 21
82 rdf:type schema:PublicationVolume
83 N37977d913ab94f0aa70ad9b27bddbfe8 rdf:first Nd844a6102862491b91ed97289bf42a37
84 rdf:rest N5e2168ba21014b35b35faa9be5c501c9
85 N5e2168ba21014b35b35faa9be5c501c9 rdf:first N64978df946cc43f68141c8a7969bc6b4
86 rdf:rest Nb6db7f2ba264404db4333c2064e21ad7
87 N64978df946cc43f68141c8a7969bc6b4 schema:affiliation grid-institutes:grid.20513.35
88 schema:familyName Lu
89 schema:givenName Bo
90 rdf:type schema:Person
91 N9960af1772f448db803b64d3cc52a84f schema:affiliation grid-institutes:grid.20513.35
92 schema:familyName Wang
93 schema:givenName Chuan
94 rdf:type schema:Person
95 Nb298060ff9f54237aca2fea4ee34858b rdf:first N9960af1772f448db803b64d3cc52a84f
96 rdf:rest rdf:nil
97 Nb6db7f2ba264404db4333c2064e21ad7 rdf:first sg:person.011133450330.13
98 rdf:rest Nb298060ff9f54237aca2fea4ee34858b
99 Nb7eb9f8f05dd41f4806ae36b8cd4ed31 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nd844a6102862491b91ed97289bf42a37 schema:affiliation grid-institutes:grid.20513.35
102 schema:familyName Liu
103 schema:givenName Lu
104 rdf:type schema:Person
105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
109 schema:name Quantum Physics
110 rdf:type schema:DefinedTerm
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
115 schema:name Data Format
116 rdf:type schema:DefinedTerm
117 sg:journal.1052742 schema:issn 1570-0755
118 1573-1332
119 schema:name Quantum Information Processing
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.011133450330.13 schema:affiliation grid-institutes:grid.20513.35
123 schema:familyName Song
124 schema:givenName Jun-Yang
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011133450330.13
126 rdf:type schema:Person
127 sg:pub.10.1007/s11128-019-2494-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122678760
128 https://doi.org/10.1007/s11128-019-2494-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11432-020-2955-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133099436
131 https://doi.org/10.1007/s11432-020-2955-6
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11433-019-1450-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123465747
134 https://doi.org/10.1007/s11433-019-1450-8
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s11467-007-0050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021119742
137 https://doi.org/10.1007/s11467-007-0050-3
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s43673-021-00017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138866782
140 https://doi.org/10.1007/s43673-021-00017-0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/lsa.2016.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029812225
143 https://doi.org/10.1038/lsa.2016.144
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/s41377-019-0132-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111914157
146 https://doi.org/10.1038/s41377-019-0132-3
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/s41377-021-00634-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141109118
149 https://doi.org/10.1038/s41377-021-00634-2
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41377-022-00769-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1146916464
152 https://doi.org/10.1038/s41377-022-00769-w
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/s41586-018-0066-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103702821
155 https://doi.org/10.1038/s41586-018-0066-6
156 rdf:type schema:CreativeWork
157 grid-institutes:grid.20513.35 schema:alternateName School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China
158 schema:name School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...