Quantum circuits of CNOT gates: optimization and entanglement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-29

AUTHORS

Marc Bataille

ABSTRACT

We study quantum circuits composed of a sequence of CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates between distant qubits of a n-qubit system. We present some results concerning two important topics related to these circuits: circuit optimization and emergence of entanglement. Regarding the optimization problem, we first describe the group structure underlying quantum circuits generated by CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates (group isomorphism, group presentation), then we apply these mathematical results to the description of heuristics to reduce the number of gates in these circuits and we also propose an optimization algorithm for circuits of a few qubits. Concerning entanglement, we show how to create some useful entangled states when a circuit of CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates acts on a fully factorized state. In the case of a 3-qubit system, we prove that a CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} circuit acting on a fully factorized state can create all types of entanglement and we propose a method to evaluate the reliability of the implementation of a SLOCC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {SLOCC}$$\end{document}-equivalent to the state |W3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathtt {W}_3\rangle $$\end{document} in a quantum machine by computing the value of the hyperdeterminant. In the case of a 4-qubit system, we propose a circuit to compute a generic entangled state and a (computer-assisted) proof of the impossibility of creating a SLOCC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {SLOCC}$$\end{document}-equivalent to the state |W4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathtt {W}_4\rangle $$\end{document} from a circuit of CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates acting on a factorized state More... »

PAGES

269

References to SciGraph publications

  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2019-11-29. Benchmarking an 11-qubit quantum computer in NATURE COMMUNICATIONS
  • 2015-09-29. Advances in quantum teleportation in NATURE PHOTONICS
  • 2014-12-02. On symmetric SL-invariant polynomials in four qubits in SYMMETRY: REPRESENTATION THEORY AND ITS APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-022-03577-8

    DOI

    http://dx.doi.org/10.1007/s11128-022-03577-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149849164


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "LITIS Laboratory, Universit\u00e9 Rouen-Normandie, 685 Avenue de l\u2019Universit\u00e9, 76800, Saint-\u00c9tienne-du-Rouvray, France", 
              "id": "http://www.grid.ac/institutes/grid.10400.35", 
              "name": [
                "LITIS Laboratory, Universit\u00e9 Rouen-Normandie, 685 Avenue de l\u2019Universit\u00e9, 76800, Saint-\u00c9tienne-du-Rouvray, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bataille", 
            "givenName": "Marc", 
            "id": "sg:person.07357427077.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357427077.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4939-1590-3_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001557038", 
              "https://doi.org/10.1007/978-1-4939-1590-3_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040127709", 
              "https://doi.org/10.1038/nphoton.2015.154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-13534-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123013260", 
              "https://doi.org/10.1038/s41467-019-13534-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84800-988-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044213065", 
              "https://doi.org/10.1007/978-1-84800-988-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-29", 
        "datePublishedReg": "2022-07-29", 
        "description": "We study quantum circuits composed of a sequence of CNOT\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\texttt {CNOT}$$\\end{document} gates between distant qubits of a n-qubit system. We present some results concerning two important topics related to these circuits: circuit optimization and emergence of entanglement. Regarding the optimization problem, we first describe the group structure underlying quantum circuits generated by CNOT\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\texttt {CNOT}$$\\end{document} gates (group isomorphism, group presentation), then we apply these mathematical results to the description of heuristics to reduce the number of gates in these circuits and we also propose an optimization algorithm for circuits of a few qubits. Concerning entanglement, we show how to create some useful entangled states when a circuit of CNOT\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\texttt {CNOT}$$\\end{document} gates acts on a fully factorized state. In the case of a 3-qubit system, we prove that a CNOT\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\texttt {CNOT}$$\\end{document} circuit acting on a fully factorized state can create all types of entanglement and we propose a method to evaluate the reliability of the implementation of a SLOCC\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathtt {SLOCC}$$\\end{document}-equivalent to the state |W3\u27e9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|\\mathtt {W}_3\\rangle $$\\end{document} in a quantum machine by computing the value of the hyperdeterminant. In the case of a 4-qubit system, we propose a circuit to compute a generic entangled state and a (computer-assisted) proof of the impossibility of creating a SLOCC\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathtt {SLOCC}$$\\end{document}-equivalent to the state |W4\u27e9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|\\mathtt {W}_4\\rangle $$\\end{document} from a circuit of CNOT\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\texttt {CNOT}$$\\end{document} gates acting on a factorized state", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11128-022-03577-8", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "factorized state", 
          "quantum circuits", 
          "emergence of entanglement", 
          "n-qubit systems", 
          "mathematical results", 
          "optimization problem", 
          "quantum machine", 
          "optimization algorithm", 
          "circuit optimization", 
          "type of entanglement", 
          "group structure", 
          "CNOT gate", 
          "distant qubits", 
          "qubits", 
          "number of gates", 
          "entanglement", 
          "optimization", 
          "hyperdeterminant", 
          "gate", 
          "important topic", 
          "circuit", 
          "system", 
          "algorithm", 
          "state", 
          "problem", 
          "heuristics", 
          "proof", 
          "description", 
          "cases", 
          "results", 
          "number", 
          "structure", 
          "reliability", 
          "machine", 
          "implementation", 
          "impossibility", 
          "values", 
          "topic", 
          "sequence", 
          "types", 
          "emergence", 
          "acting", 
          "method"
        ], 
        "name": "Quantum circuits of CNOT gates: optimization and entanglement", 
        "pagination": "269", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149849164"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-022-03577-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-022-03577-8", 
          "https://app.dimensions.ai/details/publication/pub.1149849164"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_923.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11128-022-03577-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03577-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03577-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03577-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-022-03577-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      21 PREDICATES      71 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-022-03577-8 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N8db0ba620be646f88f481422e7582832
    4 schema:citation sg:pub.10.1007/978-1-4939-1590-3_9
    5 sg:pub.10.1007/978-1-84800-988-2
    6 sg:pub.10.1038/nphoton.2015.154
    7 sg:pub.10.1038/s41467-019-13534-2
    8 schema:datePublished 2022-07-29
    9 schema:datePublishedReg 2022-07-29
    10 schema:description We study quantum circuits composed of a sequence of CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates between distant qubits of a n-qubit system. We present some results concerning two important topics related to these circuits: circuit optimization and emergence of entanglement. Regarding the optimization problem, we first describe the group structure underlying quantum circuits generated by CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates (group isomorphism, group presentation), then we apply these mathematical results to the description of heuristics to reduce the number of gates in these circuits and we also propose an optimization algorithm for circuits of a few qubits. Concerning entanglement, we show how to create some useful entangled states when a circuit of CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates acts on a fully factorized state. In the case of a 3-qubit system, we prove that a CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} circuit acting on a fully factorized state can create all types of entanglement and we propose a method to evaluate the reliability of the implementation of a SLOCC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {SLOCC}$$\end{document}-equivalent to the state |W3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathtt {W}_3\rangle $$\end{document} in a quantum machine by computing the value of the hyperdeterminant. In the case of a 4-qubit system, we propose a circuit to compute a generic entangled state and a (computer-assisted) proof of the impossibility of creating a SLOCC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {SLOCC}$$\end{document}-equivalent to the state |W4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathtt {W}_4\rangle $$\end{document} from a circuit of CNOT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {CNOT}$$\end{document} gates acting on a factorized state
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N8166f0e9a91c48df8720b356b6ec6f38
    14 Nee596c55a9b64816bac0279b65aa70cd
    15 sg:journal.1052742
    16 schema:keywords CNOT gate
    17 acting
    18 algorithm
    19 cases
    20 circuit
    21 circuit optimization
    22 description
    23 distant qubits
    24 emergence
    25 emergence of entanglement
    26 entanglement
    27 factorized state
    28 gate
    29 group structure
    30 heuristics
    31 hyperdeterminant
    32 implementation
    33 important topic
    34 impossibility
    35 machine
    36 mathematical results
    37 method
    38 n-qubit systems
    39 number
    40 number of gates
    41 optimization
    42 optimization algorithm
    43 optimization problem
    44 problem
    45 proof
    46 quantum circuits
    47 quantum machine
    48 qubits
    49 reliability
    50 results
    51 sequence
    52 state
    53 structure
    54 system
    55 topic
    56 type of entanglement
    57 types
    58 values
    59 schema:name Quantum circuits of CNOT gates: optimization and entanglement
    60 schema:pagination 269
    61 schema:productId N13ac1cb5cc8e46e68807f1994eeb8796
    62 N2d45325b0fe544ec8c697cf447d1a7d8
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149849164
    64 https://doi.org/10.1007/s11128-022-03577-8
    65 schema:sdDatePublished 2022-10-01T06:49
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher Nf80b94a9b89f47b499841411f667e202
    68 schema:url https://doi.org/10.1007/s11128-022-03577-8
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N13ac1cb5cc8e46e68807f1994eeb8796 schema:name dimensions_id
    73 schema:value pub.1149849164
    74 rdf:type schema:PropertyValue
    75 N2d45325b0fe544ec8c697cf447d1a7d8 schema:name doi
    76 schema:value 10.1007/s11128-022-03577-8
    77 rdf:type schema:PropertyValue
    78 N8166f0e9a91c48df8720b356b6ec6f38 schema:volumeNumber 21
    79 rdf:type schema:PublicationVolume
    80 N8db0ba620be646f88f481422e7582832 rdf:first sg:person.07357427077.53
    81 rdf:rest rdf:nil
    82 Nee596c55a9b64816bac0279b65aa70cd schema:issueNumber 7
    83 rdf:type schema:PublicationIssue
    84 Nf80b94a9b89f47b499841411f667e202 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Physical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Quantum Physics
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1052742 schema:issn 1570-0755
    93 1573-1332
    94 schema:name Quantum Information Processing
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.07357427077.53 schema:affiliation grid-institutes:grid.10400.35
    98 schema:familyName Bataille
    99 schema:givenName Marc
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357427077.53
    101 rdf:type schema:Person
    102 sg:pub.10.1007/978-1-4939-1590-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001557038
    103 https://doi.org/10.1007/978-1-4939-1590-3_9
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/978-1-84800-988-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044213065
    106 https://doi.org/10.1007/978-1-84800-988-2
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1038/nphoton.2015.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040127709
    109 https://doi.org/10.1038/nphoton.2015.154
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1038/s41467-019-13534-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123013260
    112 https://doi.org/10.1038/s41467-019-13534-2
    113 rdf:type schema:CreativeWork
    114 grid-institutes:grid.10400.35 schema:alternateName LITIS Laboratory, Université Rouen-Normandie, 685 Avenue de l’Université, 76800, Saint-Étienne-du-Rouvray, France
    115 schema:name LITIS Laboratory, Université Rouen-Normandie, 685 Avenue de l’Université, 76800, Saint-Étienne-du-Rouvray, France
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...