Tight upper bound for the maximal expectation value of the Mermin operators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-22

AUTHORS

Mohd Asad Siddiqui, Sk Sazim

ABSTRACT

The violation of the Mermin inequality (MI) for multipartite quantum states guarantees the existence of nonlocality between either few or all parties. The detection of optimal MI violation is fundamentally important, but current methods only involve numerical optimizations, and thus hard to find even for three-qubit states. In this paper, we provide a simple and elegant analytical method to achieve the upper bound of Mermin operator for arbitrary three-qubit states. Also, the necessary and sufficient conditions for the tightness of the bound for some class of tripartite states have been stated. Finally, we suggest an extension of this result for up to n-qubits. More... »

PAGES

131

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-019-2246-1

DOI

http://dx.doi.org/10.1007/s11128-019-2246-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112945826


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306, Manauli, India", 
          "id": "http://www.grid.ac/institutes/grid.458435.b", 
          "name": [
            "Department of Physics, National Institute of Technology, 800005, Patna, India", 
            "Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306, Manauli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddiqui", 
        "givenName": "Mohd Asad", 
        "id": "sg:person.012763565477.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763565477.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quantum Information and Computation group, Harish-Chandra Research Institute, HBNI, 211019, Allahabad, India", 
          "id": "http://www.grid.ac/institutes/grid.450311.2", 
          "name": [
            "Quantum Information and Computation group, Harish-Chandra Research Institute, HBNI, 211019, Allahabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sazim", 
        "givenName": "Sk", 
        "id": "sg:person.015115062573.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115062573.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35074041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011880944", 
          "https://doi.org/10.1038/35074041"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-22", 
    "datePublishedReg": "2019-03-22", 
    "description": "The violation of the Mermin inequality (MI) for multipartite quantum states guarantees the existence of nonlocality between either few or all parties. The detection of optimal MI violation is fundamentally important, but current methods only involve numerical optimizations, and thus hard to find even for three-qubit states. In this paper, we provide a simple and elegant analytical method to achieve the upper bound of Mermin operator for arbitrary three-qubit states. Also, the necessary and sufficient conditions for the tightness of the bound for some class of tripartite states have been stated. Finally, we suggest an extension of this result for up to n-qubits.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11128-019-2246-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "three-qubit states", 
      "elegant analytical method", 
      "sufficient conditions", 
      "numerical optimization", 
      "expectation value", 
      "quantum states", 
      "multipartite quantum states", 
      "Mermin inequality", 
      "tripartite state", 
      "operators", 
      "qubits", 
      "analytical method", 
      "nonlocality", 
      "optimization", 
      "current methods", 
      "inequality", 
      "violation", 
      "state", 
      "existence", 
      "class", 
      "extension", 
      "tightness", 
      "conditions", 
      "results", 
      "values", 
      "detection", 
      "parties", 
      "method", 
      "paper", 
      "existence of nonlocality", 
      "optimal MI violation", 
      "MI violation", 
      "Mermin operator", 
      "maximal expectation value"
    ], 
    "name": "Tight upper bound for the maximal expectation value of the Mermin operators", 
    "pagination": "131", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112945826"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-019-2246-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-019-2246-1", 
      "https://app.dimensions.ai/details/publication/pub.1112945826"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_803.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11128-019-2246-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2246-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2246-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2246-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2246-1'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      60 URIs      51 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-019-2246-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb69ddc9d6cfa45ad8c802b3eda3e2dcb
4 schema:citation sg:pub.10.1038/35074041
5 schema:datePublished 2019-03-22
6 schema:datePublishedReg 2019-03-22
7 schema:description The violation of the Mermin inequality (MI) for multipartite quantum states guarantees the existence of nonlocality between either few or all parties. The detection of optimal MI violation is fundamentally important, but current methods only involve numerical optimizations, and thus hard to find even for three-qubit states. In this paper, we provide a simple and elegant analytical method to achieve the upper bound of Mermin operator for arbitrary three-qubit states. Also, the necessary and sufficient conditions for the tightness of the bound for some class of tripartite states have been stated. Finally, we suggest an extension of this result for up to n-qubits.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9c5ad673e01d4f9695f5c4f141308788
12 Ncf9f1d2a708a4bb7a3a81ddf849328de
13 sg:journal.1052742
14 schema:keywords MI violation
15 Mermin inequality
16 Mermin operator
17 analytical method
18 class
19 conditions
20 current methods
21 detection
22 elegant analytical method
23 existence
24 existence of nonlocality
25 expectation value
26 extension
27 inequality
28 maximal expectation value
29 method
30 multipartite quantum states
31 nonlocality
32 numerical optimization
33 operators
34 optimal MI violation
35 optimization
36 paper
37 parties
38 quantum states
39 qubits
40 results
41 state
42 sufficient conditions
43 three-qubit states
44 tightness
45 tripartite state
46 values
47 violation
48 schema:name Tight upper bound for the maximal expectation value of the Mermin operators
49 schema:pagination 131
50 schema:productId N3bcdd59dad7044f385cb5caaa20709dd
51 Nfbb7ae9f0bee45a48d74bd1930ac7fc0
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112945826
53 https://doi.org/10.1007/s11128-019-2246-1
54 schema:sdDatePublished 2021-12-01T19:43
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N3ba4eaa2894243da8e721d560e6d5a76
57 schema:url https://doi.org/10.1007/s11128-019-2246-1
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N3ba4eaa2894243da8e721d560e6d5a76 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N3bcdd59dad7044f385cb5caaa20709dd schema:name dimensions_id
64 schema:value pub.1112945826
65 rdf:type schema:PropertyValue
66 N47c1e6fdb9da4ae29b7d6a87771b09b6 rdf:first sg:person.015115062573.19
67 rdf:rest rdf:nil
68 N9c5ad673e01d4f9695f5c4f141308788 schema:volumeNumber 18
69 rdf:type schema:PublicationVolume
70 Nb69ddc9d6cfa45ad8c802b3eda3e2dcb rdf:first sg:person.012763565477.81
71 rdf:rest N47c1e6fdb9da4ae29b7d6a87771b09b6
72 Ncf9f1d2a708a4bb7a3a81ddf849328de schema:issueNumber 5
73 rdf:type schema:PublicationIssue
74 Nfbb7ae9f0bee45a48d74bd1930ac7fc0 schema:name doi
75 schema:value 10.1007/s11128-019-2246-1
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1052742 schema:issn 1570-0755
84 1573-1332
85 schema:name Quantum Information Processing
86 schema:publisher Springer Nature
87 rdf:type schema:Periodical
88 sg:person.012763565477.81 schema:affiliation grid-institutes:grid.458435.b
89 schema:familyName Siddiqui
90 schema:givenName Mohd Asad
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763565477.81
92 rdf:type schema:Person
93 sg:person.015115062573.19 schema:affiliation grid-institutes:grid.450311.2
94 schema:familyName Sazim
95 schema:givenName Sk
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115062573.19
97 rdf:type schema:Person
98 sg:pub.10.1038/35074041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011880944
99 https://doi.org/10.1038/35074041
100 rdf:type schema:CreativeWork
101 grid-institutes:grid.450311.2 schema:alternateName Quantum Information and Computation group, Harish-Chandra Research Institute, HBNI, 211019, Allahabad, India
102 schema:name Quantum Information and Computation group, Harish-Chandra Research Institute, HBNI, 211019, Allahabad, India
103 rdf:type schema:Organization
104 grid-institutes:grid.458435.b schema:alternateName Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306, Manauli, India
105 schema:name Department of Physics, National Institute of Technology, 800005, Patna, India
106 Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306, Manauli, India
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...