Indefinite causal order aids quantum depolarizing channel identification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Michael Frey

ABSTRACT

Quantum channel identification is the metrological determination of one or more parameters of a quantum channel. This is accomplished by passing probes in prepared states through the channel and then statistically estimating the parameter(s) from the measured channel outputs. In quantum channel identification, the channel parameters’ quantum Fisher information is a means to assess and compare different probing schemes. We use quantum Fisher information to study a probing scheme in which the channel is put in indefinite causal order (ICO) with copies of itself, focusing our investigation on probing the qudit (d-dimensional) depolarizing channel to estimate its state preservation probability. This ICO arrangement is one in which both the eigenvectors and eigenvalues of the channel output depend on the channel’s state preservation probability. We overcome this complication to obtain the quantum Fisher information in analytical form. This result shows that ICO-assisted probing yields greater information than does the comparable probe re-circulation scheme with definite causal order, that the information gained is greater when the channel ordering is more indefinite, and that the information gained is greatest when the channel ordering is maximally indefinite. This leads us to conclude that ICO is acting here in a strong sense as an aid to channel probing. The effectiveness of ICO for probing the depolarizing channel decreases with probe dimension, being most effective for qubits. More... »

PAGES

96

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-019-2186-9

DOI

http://dx.doi.org/10.1007/s11128-019-2186-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112220608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Statistical Engineering Division, National Institute of Standards and Technology, 80305, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frey", 
        "givenName": "Michael", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms8913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008315432", 
          "https://doi.org/10.1038/ncomms8913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9107-0_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726315", 
          "https://doi.org/10.1007/978-1-4020-9107-0_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9107-0_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726315", 
          "https://doi.org/10.1007/978-1-4020-9107-0_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.022318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018708894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.022318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018708894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028438280", 
          "https://doi.org/10.1038/ncomms2076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(67)90366-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030517889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(67)90366-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030517889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.818668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033263769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/20/205306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036219172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ic.2016.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042326043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.040301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046543288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.040301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046543288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.042304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.042304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.100502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.100502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219749909004839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063006065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511976667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098774954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.120502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101710197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.120502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101710197"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Quantum channel identification is the metrological determination of one or more parameters of a quantum channel. This is accomplished by passing probes in prepared states through the channel and then statistically estimating the parameter(s) from the measured channel outputs. In quantum channel identification, the channel parameters\u2019 quantum Fisher information is a means to assess and compare different probing schemes. We use quantum Fisher information to study a probing scheme in which the channel is put in indefinite causal order (ICO) with copies of itself, focusing our investigation on probing the qudit (d-dimensional) depolarizing channel to estimate its state preservation probability. This ICO arrangement is one in which both the eigenvectors and eigenvalues of the channel output depend on the channel\u2019s state preservation probability. We overcome this complication to obtain the quantum Fisher information in analytical form. This result shows that ICO-assisted probing yields greater information than does the comparable probe re-circulation scheme with definite causal order, that the information gained is greater when the channel ordering is more indefinite, and that the information gained is greatest when the channel ordering is maximally indefinite. This leads us to conclude that ICO is acting here in a strong sense as an aid to channel probing. The effectiveness of ICO for probing the depolarizing channel decreases with probe dimension, being most effective for qubits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-019-2186-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Indefinite causal order aids quantum depolarizing channel identification", 
    "pagination": "96", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e8c3b38191a90d2adc694cfe6ce7f49b8e8df77a1a17218f24578f51327cb122"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-019-2186-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112220608"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-019-2186-9", 
      "https://app.dimensions.ai/details/publication/pub.1112220608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11128-019-2186-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2186-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2186-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2186-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2186-9'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-019-2186-9 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nd2dbedbe823c431e811eb16a68a0b134
4 schema:citation sg:pub.10.1007/978-1-4020-9107-0_21
5 sg:pub.10.1038/ncomms2076
6 sg:pub.10.1038/ncomms8913
7 https://doi.org/10.1016/0375-9601(67)90366-0
8 https://doi.org/10.1016/j.ic.2016.02.008
9 https://doi.org/10.1017/cbo9780511976667
10 https://doi.org/10.1088/1751-8113/44/20/205306
11 https://doi.org/10.1103/physreva.63.042304
12 https://doi.org/10.1103/physreva.86.040301
13 https://doi.org/10.1103/physreva.88.022318
14 https://doi.org/10.1103/physrevlett.117.100502
15 https://doi.org/10.1103/physrevlett.120.120502
16 https://doi.org/10.1117/12.818668
17 https://doi.org/10.1142/s0219749909004839
18 schema:datePublished 2019-04
19 schema:datePublishedReg 2019-04-01
20 schema:description Quantum channel identification is the metrological determination of one or more parameters of a quantum channel. This is accomplished by passing probes in prepared states through the channel and then statistically estimating the parameter(s) from the measured channel outputs. In quantum channel identification, the channel parameters’ quantum Fisher information is a means to assess and compare different probing schemes. We use quantum Fisher information to study a probing scheme in which the channel is put in indefinite causal order (ICO) with copies of itself, focusing our investigation on probing the qudit (d-dimensional) depolarizing channel to estimate its state preservation probability. This ICO arrangement is one in which both the eigenvectors and eigenvalues of the channel output depend on the channel’s state preservation probability. We overcome this complication to obtain the quantum Fisher information in analytical form. This result shows that ICO-assisted probing yields greater information than does the comparable probe re-circulation scheme with definite causal order, that the information gained is greater when the channel ordering is more indefinite, and that the information gained is greatest when the channel ordering is maximally indefinite. This leads us to conclude that ICO is acting here in a strong sense as an aid to channel probing. The effectiveness of ICO for probing the depolarizing channel decreases with probe dimension, being most effective for qubits.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N741913d1153141cbbd9d4c19e7179e55
25 Nea461f95c6634f8681125fe6b57b323e
26 sg:journal.1052742
27 schema:name Indefinite causal order aids quantum depolarizing channel identification
28 schema:pagination 96
29 schema:productId N0f961ecf8e0a444dac3427e8ee941b98
30 N39d979a4178a42f48f46fdce21878fb1
31 Nc68b30297bb1459aa51168426d26f822
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112220608
33 https://doi.org/10.1007/s11128-019-2186-9
34 schema:sdDatePublished 2019-04-11T13:19
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb518931180d14c6d967814de0ecf0908
37 schema:url https://link.springer.com/10.1007%2Fs11128-019-2186-9
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0f961ecf8e0a444dac3427e8ee941b98 schema:name readcube_id
42 schema:value e8c3b38191a90d2adc694cfe6ce7f49b8e8df77a1a17218f24578f51327cb122
43 rdf:type schema:PropertyValue
44 N39d979a4178a42f48f46fdce21878fb1 schema:name dimensions_id
45 schema:value pub.1112220608
46 rdf:type schema:PropertyValue
47 N592740ce961e430ca6694f3047d7d16c schema:affiliation https://www.grid.ac/institutes/grid.94225.38
48 schema:familyName Frey
49 schema:givenName Michael
50 rdf:type schema:Person
51 N741913d1153141cbbd9d4c19e7179e55 schema:issueNumber 4
52 rdf:type schema:PublicationIssue
53 Nb518931180d14c6d967814de0ecf0908 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nc68b30297bb1459aa51168426d26f822 schema:name doi
56 schema:value 10.1007/s11128-019-2186-9
57 rdf:type schema:PropertyValue
58 Nd2dbedbe823c431e811eb16a68a0b134 rdf:first N592740ce961e430ca6694f3047d7d16c
59 rdf:rest rdf:nil
60 Nea461f95c6634f8681125fe6b57b323e schema:volumeNumber 18
61 rdf:type schema:PublicationVolume
62 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
66 schema:name Quantum Physics
67 rdf:type schema:DefinedTerm
68 sg:journal.1052742 schema:issn 1570-0755
69 1573-1332
70 schema:name Quantum Information Processing
71 rdf:type schema:Periodical
72 sg:pub.10.1007/978-1-4020-9107-0_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011726315
73 https://doi.org/10.1007/978-1-4020-9107-0_21
74 rdf:type schema:CreativeWork
75 sg:pub.10.1038/ncomms2076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028438280
76 https://doi.org/10.1038/ncomms2076
77 rdf:type schema:CreativeWork
78 sg:pub.10.1038/ncomms8913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008315432
79 https://doi.org/10.1038/ncomms8913
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0375-9601(67)90366-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030517889
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.ic.2016.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042326043
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1017/cbo9780511976667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098774954
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1088/1751-8113/44/20/205306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036219172
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physreva.63.042304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060497056
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physreva.86.040301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046543288
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreva.88.022318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018708894
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevlett.117.100502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766232
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.120.120502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101710197
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1117/12.818668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033263769
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1142/s0219749909004839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063006065
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
104 schema:name Statistical Engineering Division, National Institute of Standards and Technology, 80305, Boulder, CO, USA
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...