A quantum query algorithm for computing the degree of a perfect nonlinear Boolean function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

WanQing Wu, HuanGuo Zhang

ABSTRACT

The degree of a Boolean function is a basic primitive that has applications in coding theory and cryptography. This paper considers a problem of computing the degree of a perfect nonlinear Boolean function in a quantum system. The details are as follows: Given a promise that the function f is either linear or perfect nonlinear in Fdn, we propose a quantum algorithm 1 to distinguish which case it is with a high probability, where d is an even number. Furtherly, for computing the degree of a perfect nonlinear Boolean function f, we present a quantum Algorithm 2 to solve it by calling quantum Algorithm 1 when d=2. The quantum query complexity of the proposed quantum Algorithm 2 is O(s), and the space complexity (the number of quantum logic gate) is O(2s), where s+1=deg(f). The analysis shows that the quantum Algorithm 2 proposed in this paper is more efficient than any classical algorithm for solving this problem. More... »

PAGES

62

References to SciGraph publications

  • 2016-03. On the matrix feedback shift register synthesis for matrix sequences in SCIENCE CHINA INFORMATION SCIENCES
  • 2016-03. Cryptanalysis of an MOR cryptosystem based on a finite associative algebra in SCIENCE CHINA INFORMATION SCIENCES
  • 2001-07-13. Non-Linear Approximations in Linear Cryptanalysis in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’96
  • 2007. A Framework for Chosen IV Statistical Analysis of Stream Ciphers in PROGRESS IN CRYPTOLOGY – INDOCRYPT 2007
  • 2010-10. SQUARE attack on block ciphers with low algebraic degree in SCIENCE CHINA INFORMATION SCIENCES
  • 2001-05-18. Nonlinearity Criteria for Cryptographic Functions in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’89
  • 2017-07. Quantum algorithm to solve function inversion with time–space trade-off in QUANTUM INFORMATION PROCESSING
  • 1999. Probabilistic Higher Order Differential Attack and Higher Order Bent Functions in ADVANCES IN CRYPTOLOGY - ASIACRYPT’99
  • 2014-06. How Low can Approximate Degree and Quantum Query Complexity be for Total Boolean Functions? in COMPUTATIONAL COMPLEXITY
  • 2012. Boolean Function Complexity, Advances and Frontiers in NONE
  • 2001-05-18. Constructions of bent functions and difference sets in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’90
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-019-2175-z

    DOI

    http://dx.doi.org/10.1007/s11128-019-2175-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111455861


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hebei University", 
              "id": "https://www.grid.ac/institutes/grid.256885.4", 
              "name": [
                "School of Cyber Security and Computers, Hebei University, 071002, Baoding, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "WanQing", 
            "id": "sg:person.015157221267.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157221267.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wuhan University", 
              "id": "https://www.grid.ac/institutes/grid.49470.3e", 
              "name": [
                "Computer School of Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "HuanGuo", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-46885-4_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006296575", 
              "https://doi.org/10.1007/3-540-46885-4_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46885-4_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006296575", 
              "https://doi.org/10.1007/3-540-46885-4_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68339-9_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008038571", 
              "https://doi.org/10.1007/3-540-68339-9_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68339-9_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008038571", 
              "https://doi.org/10.1007/3-540-68339-9_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48000-6_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010045544", 
              "https://doi.org/10.1007/978-3-540-48000-6_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48000-6_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010045544", 
              "https://doi.org/10.1007/978-3-540-48000-6_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24508-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019882063", 
              "https://doi.org/10.1007/978-3-642-24508-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24508-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019882063", 
              "https://doi.org/10.1007/978-3-642-24508-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/502090.502097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021905466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-015-5302-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022433463", 
              "https://doi.org/10.1007/s11432-015-5302-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46877-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028172990", 
              "https://doi.org/10.1007/3-540-46877-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46877-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028172990", 
              "https://doi.org/10.1007/3-540-46877-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2005.01.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029074595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-015-5447-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029541944", 
              "https://doi.org/10.1007/s11432-015-5447-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/36/10/312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038245245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207160.2014.999051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038272275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77026-8_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041077964", 
              "https://doi.org/10.1007/978-3-540-77026-8_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77026-8_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041077964", 
              "https://doi.org/10.1007/978-3-540-77026-8_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3975(01)00144-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043587597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-010-4061-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044733606", 
              "https://doi.org/10.1007/s11432-010-4061-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-010-4061-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044733606", 
              "https://doi.org/10.1007/s11432-010-4061-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00037-014-0083-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048874671", 
              "https://doi.org/10.1007/s00037-014-0083-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-ifs.2016.0437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056828798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0097539796300933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219749915500501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063006696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-017-1622-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085572982", 
              "https://doi.org/10.1007/s11128-017-1622-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-017-1622-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085572982", 
              "https://doi.org/10.1007/s11128-017-1622-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3106234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091489638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismvl.2011.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093446763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isita.2010.5649426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095373763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.97.062331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105020599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.97.062331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105020599"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "The degree of a Boolean function is a basic primitive that has applications in coding theory and cryptography. This paper considers a problem of computing the degree of a perfect nonlinear Boolean function in a quantum system. The details are as follows: Given a promise that the function f is either linear or perfect nonlinear in Fdn, we propose a quantum algorithm 1 to distinguish which case it is with a high probability, where d is an even number. Furtherly, for computing the degree of a perfect nonlinear Boolean function f, we present a quantum Algorithm 2 to solve it by calling quantum Algorithm 1 when d=2. The quantum query complexity of the proposed quantum Algorithm 2 is O(s), and the space complexity (the number of quantum logic gate) is O(2s), where s+1=deg(f). The analysis shows that the quantum Algorithm 2 proposed in this paper is more efficient than any classical algorithm for solving this problem.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11128-019-2175-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "A quantum query algorithm for computing the degree of a perfect nonlinear Boolean function", 
        "pagination": "62", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ab4cdbcbdcfc4c6a610ac10749b8881dfb889303db47929722d6351763aae3e8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-019-2175-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111455861"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-019-2175-z", 
          "https://app.dimensions.ai/details/publication/pub.1111455861"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54336_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11128-019-2175-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2175-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2175-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2175-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-019-2175-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-019-2175-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N903f5e70facf4ab889fb26e3182c82ad
    4 schema:citation sg:pub.10.1007/3-540-46877-3_13
    5 sg:pub.10.1007/3-540-46885-4_53
    6 sg:pub.10.1007/3-540-68339-9_20
    7 sg:pub.10.1007/978-3-540-48000-6_7
    8 sg:pub.10.1007/978-3-540-77026-8_20
    9 sg:pub.10.1007/978-3-642-24508-4
    10 sg:pub.10.1007/s00037-014-0083-2
    11 sg:pub.10.1007/s11128-017-1622-y
    12 sg:pub.10.1007/s11432-010-4061-2
    13 sg:pub.10.1007/s11432-015-5302-1
    14 sg:pub.10.1007/s11432-015-5447-y
    15 https://doi.org/10.1016/j.tcs.2005.01.019
    16 https://doi.org/10.1016/s0304-3975(01)00144-x
    17 https://doi.org/10.1049/iet-ifs.2016.0437
    18 https://doi.org/10.1080/00207160.2014.999051
    19 https://doi.org/10.1088/0305-4470/36/10/312
    20 https://doi.org/10.1103/physreva.97.062331
    21 https://doi.org/10.1109/isita.2010.5649426
    22 https://doi.org/10.1109/ismvl.2011.54
    23 https://doi.org/10.1137/s0097539796300933
    24 https://doi.org/10.1142/s0219749915500501
    25 https://doi.org/10.1145/3106234
    26 https://doi.org/10.1145/502090.502097
    27 schema:datePublished 2019-03
    28 schema:datePublishedReg 2019-03-01
    29 schema:description The degree of a Boolean function is a basic primitive that has applications in coding theory and cryptography. This paper considers a problem of computing the degree of a perfect nonlinear Boolean function in a quantum system. The details are as follows: Given a promise that the function f is either linear or perfect nonlinear in Fdn, we propose a quantum algorithm 1 to distinguish which case it is with a high probability, where d is an even number. Furtherly, for computing the degree of a perfect nonlinear Boolean function f, we present a quantum Algorithm 2 to solve it by calling quantum Algorithm 1 when d=2. The quantum query complexity of the proposed quantum Algorithm 2 is O(s), and the space complexity (the number of quantum logic gate) is O(2s), where s+1=deg(f). The analysis shows that the quantum Algorithm 2 proposed in this paper is more efficient than any classical algorithm for solving this problem.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N746c135d855c49faac8f58e06aa8be77
    34 Na42663a1e30140ed8b528ecaa4dba500
    35 sg:journal.1052742
    36 schema:name A quantum query algorithm for computing the degree of a perfect nonlinear Boolean function
    37 schema:pagination 62
    38 schema:productId N00c1cbd7a44e4db399e7d4cae3e7b7e9
    39 N48a92f13a0664b6cbc18e7782073b6b6
    40 Neda3262fa0a142c7a215b230b36f9c63
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111455861
    42 https://doi.org/10.1007/s11128-019-2175-z
    43 schema:sdDatePublished 2019-04-11T10:21
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N66c514bbbcf34ecdb48b76280529d1d2
    46 schema:url https://link.springer.com/10.1007%2Fs11128-019-2175-z
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N00c1cbd7a44e4db399e7d4cae3e7b7e9 schema:name readcube_id
    51 schema:value ab4cdbcbdcfc4c6a610ac10749b8881dfb889303db47929722d6351763aae3e8
    52 rdf:type schema:PropertyValue
    53 N48a92f13a0664b6cbc18e7782073b6b6 schema:name doi
    54 schema:value 10.1007/s11128-019-2175-z
    55 rdf:type schema:PropertyValue
    56 N66c514bbbcf34ecdb48b76280529d1d2 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N746c135d855c49faac8f58e06aa8be77 schema:issueNumber 3
    59 rdf:type schema:PublicationIssue
    60 N903f5e70facf4ab889fb26e3182c82ad rdf:first sg:person.015157221267.17
    61 rdf:rest Nd93c564c45a846409d02518f1e3f2436
    62 Na42663a1e30140ed8b528ecaa4dba500 schema:volumeNumber 18
    63 rdf:type schema:PublicationVolume
    64 Nb493638ccd5946a1965bd0dc506c2bd7 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
    65 schema:familyName Zhang
    66 schema:givenName HuanGuo
    67 rdf:type schema:Person
    68 Nd93c564c45a846409d02518f1e3f2436 rdf:first Nb493638ccd5946a1965bd0dc506c2bd7
    69 rdf:rest rdf:nil
    70 Neda3262fa0a142c7a215b230b36f9c63 schema:name dimensions_id
    71 schema:value pub.1111455861
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1052742 schema:issn 1570-0755
    80 1573-1332
    81 schema:name Quantum Information Processing
    82 rdf:type schema:Periodical
    83 sg:person.015157221267.17 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
    84 schema:familyName Wu
    85 schema:givenName WanQing
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157221267.17
    87 rdf:type schema:Person
    88 sg:pub.10.1007/3-540-46877-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028172990
    89 https://doi.org/10.1007/3-540-46877-3_13
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/3-540-46885-4_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006296575
    92 https://doi.org/10.1007/3-540-46885-4_53
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/3-540-68339-9_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008038571
    95 https://doi.org/10.1007/3-540-68339-9_20
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/978-3-540-48000-6_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010045544
    98 https://doi.org/10.1007/978-3-540-48000-6_7
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-3-540-77026-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041077964
    101 https://doi.org/10.1007/978-3-540-77026-8_20
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-642-24508-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019882063
    104 https://doi.org/10.1007/978-3-642-24508-4
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00037-014-0083-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048874671
    107 https://doi.org/10.1007/s00037-014-0083-2
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s11128-017-1622-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085572982
    110 https://doi.org/10.1007/s11128-017-1622-y
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s11432-010-4061-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044733606
    113 https://doi.org/10.1007/s11432-010-4061-2
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s11432-015-5302-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022433463
    116 https://doi.org/10.1007/s11432-015-5302-1
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s11432-015-5447-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029541944
    119 https://doi.org/10.1007/s11432-015-5447-y
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.tcs.2005.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029074595
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s0304-3975(01)00144-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043587597
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1049/iet-ifs.2016.0437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056828798
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1080/00207160.2014.999051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038272275
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1088/0305-4470/36/10/312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038245245
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physreva.97.062331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105020599
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/isita.2010.5649426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095373763
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/ismvl.2011.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093446763
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1137/s0097539796300933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880101
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1142/s0219749915500501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063006696
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1145/3106234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091489638
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/502090.502097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021905466
    144 rdf:type schema:CreativeWork
    145 https://www.grid.ac/institutes/grid.256885.4 schema:alternateName Hebei University
    146 schema:name School of Cyber Security and Computers, Hebei University, 071002, Baoding, People’s Republic of China
    147 rdf:type schema:Organization
    148 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
    149 schema:name Computer School of Wuhan University, 430072, Wuhan, People’s Republic of China
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...