On non-commutative operator graphs generated by covariant resolutions of identity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

G. G. Amosov, A. S. Mokeev

ABSTRACT

We study non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary representations of a compact group. Our main goal is searching for orthogonal projections which are anticliques (error-correcting codes) for such graphs. A special attention is paid to the covariance with respect to unitary representations of the circle group. We determine a tensor product structure in the space of representation under which the obtained anticliques are generated by entangled vectors. More... »

PAGES

325

References to SciGraph publications

  • 2011. Probabilistic and Statistical Aspects of Quantum Theory in NONE
  • 2018-10. On Construction of Anticliques for Noncommutative Operator Graphs in JOURNAL OF MATHEMATICAL SCIENCES
  • 2015-04. On multipartite superactivation of quantum channel capacities in PROBLEMS OF INFORMATION TRANSMISSION
  • 2018-04. On General Properties of Non-Commutative Operator Graphs in LOBACHEVSKII JOURNAL OF MATHEMATICS
  • Journal

    TITLE

    Quantum Information Processing

    ISSUE

    12

    VOLUME

    17

    Author Affiliations

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-018-2072-x

    DOI

    http://dx.doi.org/10.1007/s11128-018-2072-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107728708


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amosov", 
            "givenName": "G. G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mokeev", 
            "givenName": "A. S.", 
            "id": "sg:person.012235402010.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012235402010.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-1236(77)90052-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000192820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9783110273403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022441139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1996.0136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027008324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-88-7642-378-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028641783", 
              "https://doi.org/10.1007/978-88-7642-378-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-88-7642-378-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028641783", 
              "https://doi.org/10.1007/978-88-7642-378-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029995798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029995798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.89.052309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035212231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.89.052309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035212231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946015020015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045123122", 
              "https://doi.org/10.1134/s0032946015020015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/proc/13606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059345889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.52.r2493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060491074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.52.r2493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060491074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2012.2221677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061654168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1162242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062458542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s1230161208000225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063015494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1995080218030095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103399545", 
              "https://doi.org/10.1134/s1995080218030095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10958-018-4002-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106331599", 
              "https://doi.org/10.1007/s10958-018-4002-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "We study non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary representations of a compact group. Our main goal is searching for orthogonal projections which are anticliques (error-correcting codes) for such graphs. A special attention is paid to the covariance with respect to unitary representations of the circle group. We determine a tensor product structure in the space of representation under which the obtained anticliques are generated by entangled vectors.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11128-018-2072-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6709750", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "On non-commutative operator graphs generated by covariant resolutions of identity", 
        "pagination": "325", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ad320e2513846fb9fe8916fb91409ccf1a991dd7c55b528bef066fc7bfe61172"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-018-2072-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107728708"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-018-2072-x", 
          "https://app.dimensions.ai/details/publication/pub.1107728708"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000566.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11128-018-2072-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-2072-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-2072-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-2072-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-2072-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-018-2072-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N369e30cf675f40b9bdf871a6450f77dd
    4 schema:citation sg:pub.10.1007/978-88-7642-378-9
    5 sg:pub.10.1007/s10958-018-4002-y
    6 sg:pub.10.1134/s0032946015020015
    7 sg:pub.10.1134/s1995080218030095
    8 https://doi.org/10.1016/0022-1236(77)90052-0
    9 https://doi.org/10.1090/proc/13606
    10 https://doi.org/10.1098/rspa.1996.0136
    11 https://doi.org/10.1103/physreva.52.r2493
    12 https://doi.org/10.1103/physreva.89.052309
    13 https://doi.org/10.1103/physrevlett.70.1895
    14 https://doi.org/10.1103/physrevlett.84.2525
    15 https://doi.org/10.1109/tit.2012.2221677
    16 https://doi.org/10.1126/science.1162242
    17 https://doi.org/10.1142/s1230161208000225
    18 https://doi.org/10.1515/9783110273403
    19 schema:datePublished 2018-12
    20 schema:datePublishedReg 2018-12-01
    21 schema:description We study non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary representations of a compact group. Our main goal is searching for orthogonal projections which are anticliques (error-correcting codes) for such graphs. A special attention is paid to the covariance with respect to unitary representations of the circle group. We determine a tensor product structure in the space of representation under which the obtained anticliques are generated by entangled vectors.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N7339079eea1d436aabb6952cf7e8a1ba
    26 Nbe7269c2da764794be9c6e45c09def4f
    27 sg:journal.1052742
    28 schema:name On non-commutative operator graphs generated by covariant resolutions of identity
    29 schema:pagination 325
    30 schema:productId N024a73b3fe5543f38d8ff35a99c68ea8
    31 N2f25d6950867451d9f1babc178ab09a4
    32 Nb228ce6ba86d455f8d8ec8900b34650f
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107728708
    34 https://doi.org/10.1007/s11128-018-2072-x
    35 schema:sdDatePublished 2019-04-10T16:51
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N1a36071f1b5a4fa6befea4613714e861
    38 schema:url https://link.springer.com/10.1007%2Fs11128-018-2072-x
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N024a73b3fe5543f38d8ff35a99c68ea8 schema:name readcube_id
    43 schema:value ad320e2513846fb9fe8916fb91409ccf1a991dd7c55b528bef066fc7bfe61172
    44 rdf:type schema:PropertyValue
    45 N1a36071f1b5a4fa6befea4613714e861 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N2af5c0c29b244171b8325f69bd834416 rdf:first sg:person.012235402010.27
    48 rdf:rest rdf:nil
    49 N2f25d6950867451d9f1babc178ab09a4 schema:name dimensions_id
    50 schema:value pub.1107728708
    51 rdf:type schema:PropertyValue
    52 N369e30cf675f40b9bdf871a6450f77dd rdf:first N57952af0438742fe8c550bb1bbbdc445
    53 rdf:rest N2af5c0c29b244171b8325f69bd834416
    54 N57952af0438742fe8c550bb1bbbdc445 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    55 schema:familyName Amosov
    56 schema:givenName G. G.
    57 rdf:type schema:Person
    58 N7339079eea1d436aabb6952cf7e8a1ba schema:volumeNumber 17
    59 rdf:type schema:PublicationVolume
    60 Nb228ce6ba86d455f8d8ec8900b34650f schema:name doi
    61 schema:value 10.1007/s11128-018-2072-x
    62 rdf:type schema:PropertyValue
    63 Nbe7269c2da764794be9c6e45c09def4f schema:issueNumber 12
    64 rdf:type schema:PublicationIssue
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Pure Mathematics
    70 rdf:type schema:DefinedTerm
    71 sg:grant.6709750 http://pending.schema.org/fundedItem sg:pub.10.1007/s11128-018-2072-x
    72 rdf:type schema:MonetaryGrant
    73 sg:journal.1052742 schema:issn 1570-0755
    74 1573-1332
    75 schema:name Quantum Information Processing
    76 rdf:type schema:Periodical
    77 sg:person.012235402010.27 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    78 schema:familyName Mokeev
    79 schema:givenName A. S.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012235402010.27
    81 rdf:type schema:Person
    82 sg:pub.10.1007/978-88-7642-378-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028641783
    83 https://doi.org/10.1007/978-88-7642-378-9
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/s10958-018-4002-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106331599
    86 https://doi.org/10.1007/s10958-018-4002-y
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1134/s0032946015020015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045123122
    89 https://doi.org/10.1134/s0032946015020015
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1134/s1995080218030095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103399545
    92 https://doi.org/10.1134/s1995080218030095
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/0022-1236(77)90052-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000192820
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1090/proc/13606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345889
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1098/rspa.1996.0136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027008324
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physreva.52.r2493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491074
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physreva.89.052309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035212231
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physrevlett.70.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013951720
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrevlett.84.2525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029995798
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/tit.2012.2221677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061654168
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1126/science.1162242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062458542
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1142/s1230161208000225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063015494
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1515/9783110273403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022441139
    115 rdf:type schema:CreativeWork
    116 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    117 schema:name Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...