Unconditional security of a K-state quantum key distribution protocol View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Dariusz Kurzyk, Łukasz Pawela, Zbigniew Puchała

ABSTRACT

Quantum key distribution protocols constitute an important part of quantum cryptography, where the security of sensitive information arises from the laws of physics. In this paper, we introduce a family of key distribution protocols which generalize the PBC00 protcol. We compare its key with the well-known protocols such as BB84, PBC00 and generation rate to the well-known protocols such as BB84, PBC0 and R04. We also state the security analysis of these protocols based on the entanglement distillation and CSS codes techniques. More... »

PAGES

228

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-018-1998-3

DOI

http://dx.doi.org/10.1007/s11128-018-1998-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105856519


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Applied Informatics", 
          "id": "https://www.grid.ac/institutes/grid.460371.7", 
          "name": [
            "Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba\u0142tycka 5, 44-100, Gliwice, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurzyk", 
        "givenName": "Dariusz", 
        "id": "sg:person.011262206751.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262206751.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Applied Informatics", 
          "id": "https://www.grid.ac/institutes/grid.460371.7", 
          "name": [
            "Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba\u0142tycka 5, 44-100, Gliwice, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pawela", 
        "givenName": "\u0141ukasz", 
        "id": "sg:person.014354443117.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014354443117.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jagiellonian University", 
          "id": "https://www.grid.ac/institutes/grid.5522.0", 
          "name": [
            "Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba\u0142tycka 5, 44-100, Gliwice, Poland", 
            "Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, \u0141ojasiewicza 11, 30-348, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pucha\u0142a", 
        "givenName": "Zbigniew", 
        "id": "sg:person.0671721003.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671721003.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.69.032316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001886138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.032316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001886138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.040503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006430968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.040503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006430968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008535622", 
          "https://doi.org/10.1038/srep30089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013054716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013054716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.2046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016419433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.2046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016419433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(96)80001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017049774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.167904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021883664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.167904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021883664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jqis.2015.52005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023765480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1996.0136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027008324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-68697-5_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031344906", 
          "https://doi.org/10.1007/3-540-68697-5_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-68697-5_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031344906", 
          "https://doi.org/10.1007/3-540-68697-5_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340008244056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039449510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053125989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053125989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5410.2050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2748/tmj/1178243286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070921783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2016.7541747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093315670"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Quantum key distribution protocols constitute an important part of quantum cryptography, where the security of sensitive information arises from the laws of physics. In this paper, we introduce a family of key distribution protocols which generalize the PBC00 protcol. We compare its key with the well-known protocols such as BB84, PBC00 and generation rate to the well-known protocols such as BB84, PBC0 and R04. We also state the security analysis of these protocols based on the entanglement distillation and CSS codes techniques.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-018-1998-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Unconditional security of a K-state quantum key distribution protocol", 
    "pagination": "228", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d34b48fd455dcc17e820aa47cccad25a17907fe7e7342183bb625cd43505be31"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-018-1998-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105856519"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-018-1998-3", 
      "https://app.dimensions.ai/details/publication/pub.1105856519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11128-018-1998-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-1998-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-1998-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-1998-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-018-1998-3'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-018-1998-3 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N11815134d5fc4aa8a46ba2be42cf67cf
4 schema:citation sg:pub.10.1007/3-540-68697-5_26
5 sg:pub.10.1038/srep30089
6 https://doi.org/10.1016/s0375-9601(96)80001-6
7 https://doi.org/10.1080/09500340008244056
8 https://doi.org/10.1098/rspa.1996.0136
9 https://doi.org/10.1103/physreva.53.2046
10 https://doi.org/10.1103/physreva.54.1098
11 https://doi.org/10.1103/physreva.54.3824
12 https://doi.org/10.1103/physreva.65.062301
13 https://doi.org/10.1103/physreva.69.032316
14 https://doi.org/10.1103/physreva.70.052314
15 https://doi.org/10.1103/physrevlett.67.661
16 https://doi.org/10.1103/physrevlett.68.3121
17 https://doi.org/10.1103/physrevlett.78.574
18 https://doi.org/10.1103/physrevlett.85.441
19 https://doi.org/10.1103/physrevlett.90.167904
20 https://doi.org/10.1103/physrevlett.94.040503
21 https://doi.org/10.1109/isit.2016.7541747
22 https://doi.org/10.1126/science.283.5410.2050
23 https://doi.org/10.2748/tmj/1178243286
24 https://doi.org/10.4236/jqis.2015.52005
25 schema:datePublished 2018-09
26 schema:datePublishedReg 2018-09-01
27 schema:description Quantum key distribution protocols constitute an important part of quantum cryptography, where the security of sensitive information arises from the laws of physics. In this paper, we introduce a family of key distribution protocols which generalize the PBC00 protcol. We compare its key with the well-known protocols such as BB84, PBC00 and generation rate to the well-known protocols such as BB84, PBC0 and R04. We also state the security analysis of these protocols based on the entanglement distillation and CSS codes techniques.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N46b7a6cbbc9f4f118e32ea709981c8aa
32 N5c655aef4343434ba01dd8d767784c4c
33 sg:journal.1052742
34 schema:name Unconditional security of a K-state quantum key distribution protocol
35 schema:pagination 228
36 schema:productId N61ecf6ee88a84abe8d045bdf9851a01f
37 N73b802831fce48f4ae5480291177c915
38 N83322d309f2442ae8b1e544d2630830c
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105856519
40 https://doi.org/10.1007/s11128-018-1998-3
41 schema:sdDatePublished 2019-04-10T19:51
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nb91818eeb2d842f797a1a012aad25dc5
44 schema:url http://link.springer.com/10.1007/s11128-018-1998-3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N11815134d5fc4aa8a46ba2be42cf67cf rdf:first sg:person.011262206751.82
49 rdf:rest N2fbfd562189241ff86d4216998085550
50 N2fbfd562189241ff86d4216998085550 rdf:first sg:person.014354443117.66
51 rdf:rest Nfbb1083c576345199ae3857647b50159
52 N46b7a6cbbc9f4f118e32ea709981c8aa schema:volumeNumber 17
53 rdf:type schema:PublicationVolume
54 N5c655aef4343434ba01dd8d767784c4c schema:issueNumber 9
55 rdf:type schema:PublicationIssue
56 N61ecf6ee88a84abe8d045bdf9851a01f schema:name dimensions_id
57 schema:value pub.1105856519
58 rdf:type schema:PropertyValue
59 N73b802831fce48f4ae5480291177c915 schema:name doi
60 schema:value 10.1007/s11128-018-1998-3
61 rdf:type schema:PropertyValue
62 N83322d309f2442ae8b1e544d2630830c schema:name readcube_id
63 schema:value d34b48fd455dcc17e820aa47cccad25a17907fe7e7342183bb625cd43505be31
64 rdf:type schema:PropertyValue
65 Nb91818eeb2d842f797a1a012aad25dc5 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nfbb1083c576345199ae3857647b50159 rdf:first sg:person.0671721003.43
68 rdf:rest rdf:nil
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
73 schema:name Data Format
74 rdf:type schema:DefinedTerm
75 sg:journal.1052742 schema:issn 1570-0755
76 1573-1332
77 schema:name Quantum Information Processing
78 rdf:type schema:Periodical
79 sg:person.011262206751.82 schema:affiliation https://www.grid.ac/institutes/grid.460371.7
80 schema:familyName Kurzyk
81 schema:givenName Dariusz
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262206751.82
83 rdf:type schema:Person
84 sg:person.014354443117.66 schema:affiliation https://www.grid.ac/institutes/grid.460371.7
85 schema:familyName Pawela
86 schema:givenName Łukasz
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014354443117.66
88 rdf:type schema:Person
89 sg:person.0671721003.43 schema:affiliation https://www.grid.ac/institutes/grid.5522.0
90 schema:familyName Puchała
91 schema:givenName Zbigniew
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671721003.43
93 rdf:type schema:Person
94 sg:pub.10.1007/3-540-68697-5_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031344906
95 https://doi.org/10.1007/3-540-68697-5_26
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/srep30089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008535622
98 https://doi.org/10.1038/srep30089
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0375-9601(96)80001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017049774
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/09500340008244056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039449510
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1098/rspa.1996.0136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027008324
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physreva.53.2046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016419433
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physreva.54.1098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013054716
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physreva.54.3824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782738
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physreva.65.062301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060498293
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreva.69.032316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001886138
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreva.70.052314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053125989
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.67.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803926
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.68.3121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804661
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.78.574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815527
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.85.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039061342
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.90.167904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021883664
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.94.040503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006430968
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/isit.2016.7541747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093315670
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1126/science.283.5410.2050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564639
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2748/tmj/1178243286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070921783
135 rdf:type schema:CreativeWork
136 https://doi.org/10.4236/jqis.2015.52005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023765480
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.460371.7 schema:alternateName Institute of Theoretical and Applied Informatics
139 schema:name Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.5522.0 schema:alternateName Jagiellonian University
142 schema:name Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
143 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...