Resonant transition-based quantum computation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05

AUTHORS

Chen-Fu Chiang, Chang-Yu Hsieh

ABSTRACT

In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians’ spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency. More... »

PAGES

120

References to SciGraph publications

  • 2008-08. Simulation of general three-body interactions in a nuclear magnetic resonance ensemble quantum computer in SCIENTIA SINICA PHYSICA MECHANICA & ASTRONOMICA
  • 2015-02. Quantum annealing: The fastest route to quantum computation? in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-017-1552-8

    DOI

    http://dx.doi.org/10.1007/s11128-017-1552-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084029746


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "SUNY Polytechnic Institute", 
              "id": "https://www.grid.ac/institutes/grid.441535.2", 
              "name": [
                "Department of Computer Science, State University of New York Polytechnic Institute, 13502, Utica, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chiang", 
            "givenName": "Chen-Fu", 
            "id": "sg:person.07770013413.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770013413.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsieh", 
            "givenName": "Chang-Yu", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90033-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003682073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90033-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003682073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.012352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013124311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.012352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013124311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.220405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013359956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.220405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013359956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2010.0333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013613291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1992.0167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014216946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500340110076446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014974803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.031015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015080054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.031015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015080054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.062317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018259752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.062317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018259752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/44/44/445308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019043440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-008-0117-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024731067", 
              "https://doi.org/10.1007/s11433-008-0117-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1073287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027354771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2015-02344-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027581953", 
              "https://doi.org/10.1140/epjst/e2015-02344-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.77.052331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034157307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.77.052331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034157307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.61.022301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041236368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.61.022301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041236368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/15/5/053001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045303331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.89.012306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048814929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.89.012306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048814929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/237814.237866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053319325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.85.062304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060510076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.85.062304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060510076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.93.052334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060515719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.93.052334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060515719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.93.062313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060515897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.93.062313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060515897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5923/j.ijtmp.20120206.03", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073509509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/focs.2016.81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095432743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1994.365700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095740049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511813993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098732024"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05", 
        "datePublishedReg": "2017-05-01", 
        "description": "In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians\u2019 spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11128-017-1552-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Resonant transition-based quantum computation", 
        "pagination": "120", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7ea08d20bfdb3f9ce110f2cafecd6d4c87d1599ec7b2df76e4e54123244c4b6b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-017-1552-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084029746"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-017-1552-8", 
          "https://app.dimensions.ai/details/publication/pub.1084029746"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11128-017-1552-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-017-1552-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-017-1552-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-017-1552-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-017-1552-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-017-1552-8 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author Nd5d14ce69ca84e848d672b306a2f56fa
    4 schema:citation sg:pub.10.1007/s11433-008-0117-3
    5 sg:pub.10.1140/epjst/e2015-02344-2
    6 https://doi.org/10.1016/0004-3702(87)90033-6
    7 https://doi.org/10.1017/cbo9780511813993
    8 https://doi.org/10.1080/09500340110076446
    9 https://doi.org/10.1088/1367-2630/15/5/053001
    10 https://doi.org/10.1088/1751-8113/44/44/445308
    11 https://doi.org/10.1098/rspa.1992.0167
    12 https://doi.org/10.1098/rsta.2010.0333
    13 https://doi.org/10.1103/physreva.61.022301
    14 https://doi.org/10.1103/physreva.77.052331
    15 https://doi.org/10.1103/physreva.78.012352
    16 https://doi.org/10.1103/physreva.83.062317
    17 https://doi.org/10.1103/physreva.85.062304
    18 https://doi.org/10.1103/physreva.89.012306
    19 https://doi.org/10.1103/physreva.93.052334
    20 https://doi.org/10.1103/physreva.93.062313
    21 https://doi.org/10.1103/physrevlett.101.220405
    22 https://doi.org/10.1103/physrevx.6.031015
    23 https://doi.org/10.1109/focs.2016.81
    24 https://doi.org/10.1109/sfcs.1994.365700
    25 https://doi.org/10.1126/science.1073287
    26 https://doi.org/10.1145/237814.237866
    27 https://doi.org/10.5923/j.ijtmp.20120206.03
    28 schema:datePublished 2017-05
    29 schema:datePublishedReg 2017-05-01
    30 schema:description In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians’ spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N868637f1e8794b37a8c066539206b717
    35 N976e6d1c379a445fb278bcfd71d49ef4
    36 sg:journal.1052742
    37 schema:name Resonant transition-based quantum computation
    38 schema:pagination 120
    39 schema:productId N51e21e1adc6a40158ca98f407298c771
    40 N707722c675dd4339a845e30762311526
    41 Nefbb55b22ce84ef99650975c91cfba92
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084029746
    43 https://doi.org/10.1007/s11128-017-1552-8
    44 schema:sdDatePublished 2019-04-11T10:00
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N4208bdaf1ce24d03865d4768e16bf0f9
    47 schema:url https://link.springer.com/10.1007%2Fs11128-017-1552-8
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N11eae1e905df47cc997d89ca35cf5875 rdf:first N4bf612793d8c4a93b0be01d2abf09354
    52 rdf:rest rdf:nil
    53 N4208bdaf1ce24d03865d4768e16bf0f9 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N4bf612793d8c4a93b0be01d2abf09354 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    56 schema:familyName Hsieh
    57 schema:givenName Chang-Yu
    58 rdf:type schema:Person
    59 N51e21e1adc6a40158ca98f407298c771 schema:name dimensions_id
    60 schema:value pub.1084029746
    61 rdf:type schema:PropertyValue
    62 N707722c675dd4339a845e30762311526 schema:name readcube_id
    63 schema:value 7ea08d20bfdb3f9ce110f2cafecd6d4c87d1599ec7b2df76e4e54123244c4b6b
    64 rdf:type schema:PropertyValue
    65 N868637f1e8794b37a8c066539206b717 schema:volumeNumber 16
    66 rdf:type schema:PublicationVolume
    67 N976e6d1c379a445fb278bcfd71d49ef4 schema:issueNumber 5
    68 rdf:type schema:PublicationIssue
    69 Nd5d14ce69ca84e848d672b306a2f56fa rdf:first sg:person.07770013413.87
    70 rdf:rest N11eae1e905df47cc997d89ca35cf5875
    71 Nefbb55b22ce84ef99650975c91cfba92 schema:name doi
    72 schema:value 10.1007/s11128-017-1552-8
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Information and Computing Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Computation Theory and Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1052742 schema:issn 1570-0755
    81 1573-1332
    82 schema:name Quantum Information Processing
    83 rdf:type schema:Periodical
    84 sg:person.07770013413.87 schema:affiliation https://www.grid.ac/institutes/grid.441535.2
    85 schema:familyName Chiang
    86 schema:givenName Chen-Fu
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770013413.87
    88 rdf:type schema:Person
    89 sg:pub.10.1007/s11433-008-0117-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024731067
    90 https://doi.org/10.1007/s11433-008-0117-3
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1140/epjst/e2015-02344-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027581953
    93 https://doi.org/10.1140/epjst/e2015-02344-2
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0004-3702(87)90033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003682073
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1017/cbo9780511813993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732024
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1080/09500340110076446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014974803
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1088/1367-2630/15/5/053001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045303331
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1088/1751-8113/44/44/445308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019043440
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1098/rspa.1992.0167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014216946
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1098/rsta.2010.0333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013613291
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1103/physreva.61.022301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041236368
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1103/physreva.77.052331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034157307
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1103/physreva.78.012352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013124311
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1103/physreva.83.062317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018259752
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physreva.85.062304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060510076
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physreva.89.012306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048814929
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physreva.93.052334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515719
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physreva.93.062313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515897
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevlett.101.220405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013359956
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevx.6.031015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015080054
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/focs.2016.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095432743
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1126/science.1073287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354771
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1145/237814.237866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053319325
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.5923/j.ijtmp.20120206.03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073509509
    138 rdf:type schema:CreativeWork
    139 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    140 schema:name Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    141 rdf:type schema:Organization
    142 https://www.grid.ac/institutes/grid.441535.2 schema:alternateName SUNY Polytechnic Institute
    143 schema:name Department of Computer Science, State University of New York Polytechnic Institute, 13502, Utica, NY, USA
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...