Compact quantum gates for hybrid photon–atom systems assisted by Faraday rotation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-17

AUTHORS

Guo-Zhu Song, Guo-Jian Yang, Mei Zhang

ABSTRACT

We present some compact circuits for a deterministic quantum computing on the hybrid photon–atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology. More... »

PAGES

54

References to SciGraph publications

  • 2008-06-18. Superconducting quantum bits in NATURE
  • 2014-10-29. Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces in SCIENTIFIC REPORTS
  • 2014-04-30. Molecular photons interfaced with alkali atoms in NATURE
  • 2015-08-14. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities in SCIENTIFIC REPORTS
  • 2016-04-12. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities in SCIENTIFIC REPORTS
  • 2011-12-04. Controlled teleportation via photonic Faraday rotations in low-Q cavities in QUANTUM INFORMATION PROCESSING
  • 1994. Quantum Optics in NONE
  • 2015-01-05. Quantum integrated circuit: classical characterization in CHINESE SCIENCE BULLETIN (CHINESE VERSION)
  • 2015-03-19. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED in SCIENTIFIC REPORTS
  • 2014-12-18. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities in SCIENTIFIC REPORTS
  • 2012-10-27. Efficient entanglement concentration for quantum dot and optical microcavities systems in QUANTUM INFORMATION PROCESSING
  • 2016-06-08. Digitized adiabatic quantum computing with a superconducting circuit in NATURE
  • 2014-01-08. Efficient Entanglement Concentration for Arbitrary Less-Entangled N-Atom GHZ State in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2002-03. Quantum information processing with atoms and photons in NATURE
  • 2003-10. Demonstration of conditional gate operation using superconducting charge qubits in NATURE
  • 2015-01-08. A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization in CHINESE SCIENCE BULLETIN (CHINESE VERSION)
  • 2014-11-04. Compact implementation of the (SWAP)a gate on diamond nitrogen-vacancy centers coupled to resonators in QUANTUM INFORMATION PROCESSING
  • 2014-11-25. Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED in QUANTUM INFORMATION PROCESSING
  • 2001-01. A scheme for efficient quantum computation with linear optics in NATURE
  • 2015-05-14. Quantum controlled-not gate in the bad cavity regime in QUANTUM INFORMATION PROCESSING
  • 2014-04-11. Hyper-parallel photonic quantum computation with coupled quantum dots in SCIENTIFIC REPORTS
  • 2015-11-16. Hybrid Toffoli gate on photons and quantum spins in SCIENTIFIC REPORTS
  • 2014-04-09. A quantum gate between a flying optical photon and a single trapped atom in NATURE
  • 1982-04. Conservative logic in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2016-01-12. Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system in QUANTUM INFORMATION PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-016-1478-6

    DOI

    http://dx.doi.org/10.1007/s11128-016-1478-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031920878


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Guo-Zhu", 
            "id": "sg:person.011766246251.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011766246251.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Guo-Jian", 
            "id": "sg:person.01077227677.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077227677.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Mei", 
            "id": "sg:person.01335441047.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335441047.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35051009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008492203", 
              "https://doi.org/10.1038/35051009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-011-0339-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014009148", 
              "https://doi.org/10.1007/s11128-011-0339-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416238a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013275782", 
              "https://doi.org/10.1038/416238a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-013-1974-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038289370", 
              "https://doi.org/10.1007/s10773-013-1974-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-012-0502-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030705311", 
              "https://doi.org/10.1007/s11128-012-0502-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep06814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036638849", 
              "https://doi.org/10.1038/srep06814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep24183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022860886", 
              "https://doi.org/10.1038/srep24183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014805303", 
              "https://doi.org/10.1038/nature17658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11434-014-0688-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017989260", 
              "https://doi.org/10.1007/s11434-014-0688-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01857727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032661873", 
              "https://doi.org/10.1007/bf01857727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029810190", 
              "https://doi.org/10.1038/nature07128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep04623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016623986", 
              "https://doi.org/10.1038/srep04623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022266866", 
              "https://doi.org/10.1038/nature02015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-014-0868-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026601927", 
              "https://doi.org/10.1007/s11128-014-0868-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019026514", 
              "https://doi.org/10.1038/nature13177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep12918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007984501", 
              "https://doi.org/10.1038/srep12918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028112852", 
              "https://doi.org/10.1038/srep07551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033015556", 
              "https://doi.org/10.1038/nature13191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-79504-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005841402", 
              "https://doi.org/10.1007/978-3-642-79504-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006176022", 
              "https://doi.org/10.1038/srep09274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021329692", 
              "https://doi.org/10.1038/srep16716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-015-1017-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005348979", 
              "https://doi.org/10.1007/s11128-015-1017-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-015-1197-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019974239", 
              "https://doi.org/10.1007/s11128-015-1197-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-014-0884-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003540281", 
              "https://doi.org/10.1007/s11128-014-0884-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11434-014-0703-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026341060", 
              "https://doi.org/10.1007/s11434-014-0703-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01-17", 
        "datePublishedReg": "2017-01-17", 
        "description": "We present some compact circuits for a deterministic quantum computing on the hybrid photon\u2013atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11128-016-1478-6", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7023685", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8121123", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "optical microcavities", 
          "single photons", 
          "Faraday rotation", 
          "quantum gates", 
          "single-sided optical microcavity", 
          "double-sided optical microcavity", 
          "deterministic quantum computing", 
          "ancillary single photon", 
          "optical Faraday rotation", 
          "linear optical devices", 
          "hybrid quantum gates", 
          "available experimental technology", 
          "stationary qubits", 
          "quantum computation", 
          "uncoupled cavity", 
          "control qubit", 
          "target qubit", 
          "quantum computing", 
          "polarization state", 
          "microcavities", 
          "ground state", 
          "qubits", 
          "SWAP gates", 
          "Fredkin gate", 
          "experimental technology", 
          "photons", 
          "atoms", 
          "compact circuit", 
          "gate", 
          "decoherence", 
          "long distances", 
          "cavity", 
          "rotation", 
          "state", 
          "calculations", 
          "reflectance", 
          "atmosphere", 
          "computation", 
          "devices", 
          "scheme", 
          "fidelity", 
          "distance", 
          "system", 
          "transmission", 
          "circuit", 
          "protocol", 
          "technology", 
          "computing", 
          "conditions"
        ], 
        "name": "Compact quantum gates for hybrid photon\u2013atom systems assisted by Faraday rotation", 
        "pagination": "54", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031920878"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-016-1478-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-016-1478-6", 
          "https://app.dimensions.ai/details/publication/pub.1031920878"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_721.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11128-016-1478-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-016-1478-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-016-1478-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-016-1478-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-016-1478-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      21 PREDICATES      98 URIs      65 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-016-1478-6 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author Nec3d0c3ccc694e90a99f009241f30992
    4 schema:citation sg:pub.10.1007/978-3-642-79504-6
    5 sg:pub.10.1007/bf01857727
    6 sg:pub.10.1007/s10773-013-1974-8
    7 sg:pub.10.1007/s11128-011-0339-6
    8 sg:pub.10.1007/s11128-012-0502-8
    9 sg:pub.10.1007/s11128-014-0868-x
    10 sg:pub.10.1007/s11128-014-0884-x
    11 sg:pub.10.1007/s11128-015-1017-x
    12 sg:pub.10.1007/s11128-015-1197-4
    13 sg:pub.10.1007/s11434-014-0688-5
    14 sg:pub.10.1007/s11434-014-0703-x
    15 sg:pub.10.1038/35051009
    16 sg:pub.10.1038/416238a
    17 sg:pub.10.1038/nature02015
    18 sg:pub.10.1038/nature07128
    19 sg:pub.10.1038/nature13177
    20 sg:pub.10.1038/nature13191
    21 sg:pub.10.1038/nature17658
    22 sg:pub.10.1038/srep04623
    23 sg:pub.10.1038/srep06814
    24 sg:pub.10.1038/srep07551
    25 sg:pub.10.1038/srep09274
    26 sg:pub.10.1038/srep12918
    27 sg:pub.10.1038/srep16716
    28 sg:pub.10.1038/srep24183
    29 schema:datePublished 2017-01-17
    30 schema:datePublishedReg 2017-01-17
    31 schema:description We present some compact circuits for a deterministic quantum computing on the hybrid photon–atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology.
    32 schema:genre article
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N0a403991616f4dfd96a7abc9b42524a3
    35 N0e6ca42dfb0247c1bbf56255bdd0025a
    36 sg:journal.1052742
    37 schema:keywords Faraday rotation
    38 Fredkin gate
    39 SWAP gates
    40 ancillary single photon
    41 atmosphere
    42 atoms
    43 available experimental technology
    44 calculations
    45 cavity
    46 circuit
    47 compact circuit
    48 computation
    49 computing
    50 conditions
    51 control qubit
    52 decoherence
    53 deterministic quantum computing
    54 devices
    55 distance
    56 double-sided optical microcavity
    57 experimental technology
    58 fidelity
    59 gate
    60 ground state
    61 hybrid quantum gates
    62 linear optical devices
    63 long distances
    64 microcavities
    65 optical Faraday rotation
    66 optical microcavities
    67 photons
    68 polarization state
    69 protocol
    70 quantum computation
    71 quantum computing
    72 quantum gates
    73 qubits
    74 reflectance
    75 rotation
    76 scheme
    77 single photons
    78 single-sided optical microcavity
    79 state
    80 stationary qubits
    81 system
    82 target qubit
    83 technology
    84 transmission
    85 uncoupled cavity
    86 schema:name Compact quantum gates for hybrid photon–atom systems assisted by Faraday rotation
    87 schema:pagination 54
    88 schema:productId N3eb91363c2e0479ab719363d94dc3506
    89 N85b2b2d4d88b466e86440bea51201236
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031920878
    91 https://doi.org/10.1007/s11128-016-1478-6
    92 schema:sdDatePublished 2022-10-01T06:42
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Ncc85e549825c45a3b863cd77db23f2a8
    95 schema:url https://doi.org/10.1007/s11128-016-1478-6
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N0a403991616f4dfd96a7abc9b42524a3 schema:issueNumber 2
    100 rdf:type schema:PublicationIssue
    101 N0e6ca42dfb0247c1bbf56255bdd0025a schema:volumeNumber 16
    102 rdf:type schema:PublicationVolume
    103 N3eb91363c2e0479ab719363d94dc3506 schema:name dimensions_id
    104 schema:value pub.1031920878
    105 rdf:type schema:PropertyValue
    106 N4779e461af1f46e986ee946da2fd4172 rdf:first sg:person.01335441047.26
    107 rdf:rest rdf:nil
    108 N85b2b2d4d88b466e86440bea51201236 schema:name doi
    109 schema:value 10.1007/s11128-016-1478-6
    110 rdf:type schema:PropertyValue
    111 Nc18a8369f3bf428cb14e9c09e3ec57cb rdf:first sg:person.01077227677.96
    112 rdf:rest N4779e461af1f46e986ee946da2fd4172
    113 Ncc85e549825c45a3b863cd77db23f2a8 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 Nec3d0c3ccc694e90a99f009241f30992 rdf:first sg:person.011766246251.47
    116 rdf:rest Nc18a8369f3bf428cb14e9c09e3ec57cb
    117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Physical Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Optical Physics
    122 rdf:type schema:DefinedTerm
    123 sg:grant.7023685 http://pending.schema.org/fundedItem sg:pub.10.1007/s11128-016-1478-6
    124 rdf:type schema:MonetaryGrant
    125 sg:grant.8121123 http://pending.schema.org/fundedItem sg:pub.10.1007/s11128-016-1478-6
    126 rdf:type schema:MonetaryGrant
    127 sg:journal.1052742 schema:issn 1570-0755
    128 1573-1332
    129 schema:name Quantum Information Processing
    130 schema:publisher Springer Nature
    131 rdf:type schema:Periodical
    132 sg:person.01077227677.96 schema:affiliation grid-institutes:grid.20513.35
    133 schema:familyName Yang
    134 schema:givenName Guo-Jian
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077227677.96
    136 rdf:type schema:Person
    137 sg:person.011766246251.47 schema:affiliation grid-institutes:grid.20513.35
    138 schema:familyName Song
    139 schema:givenName Guo-Zhu
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011766246251.47
    141 rdf:type schema:Person
    142 sg:person.01335441047.26 schema:affiliation grid-institutes:grid.20513.35
    143 schema:familyName Zhang
    144 schema:givenName Mei
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335441047.26
    146 rdf:type schema:Person
    147 sg:pub.10.1007/978-3-642-79504-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005841402
    148 https://doi.org/10.1007/978-3-642-79504-6
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf01857727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032661873
    151 https://doi.org/10.1007/bf01857727
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s10773-013-1974-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038289370
    154 https://doi.org/10.1007/s10773-013-1974-8
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11128-011-0339-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014009148
    157 https://doi.org/10.1007/s11128-011-0339-6
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11128-012-0502-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030705311
    160 https://doi.org/10.1007/s11128-012-0502-8
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11128-014-0868-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026601927
    163 https://doi.org/10.1007/s11128-014-0868-x
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11128-014-0884-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003540281
    166 https://doi.org/10.1007/s11128-014-0884-x
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11128-015-1017-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005348979
    169 https://doi.org/10.1007/s11128-015-1017-x
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11128-015-1197-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019974239
    172 https://doi.org/10.1007/s11128-015-1197-4
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11434-014-0688-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017989260
    175 https://doi.org/10.1007/s11434-014-0688-5
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11434-014-0703-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026341060
    178 https://doi.org/10.1007/s11434-014-0703-x
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/35051009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008492203
    181 https://doi.org/10.1038/35051009
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/416238a schema:sameAs https://app.dimensions.ai/details/publication/pub.1013275782
    184 https://doi.org/10.1038/416238a
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nature02015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022266866
    187 https://doi.org/10.1038/nature02015
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature07128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029810190
    190 https://doi.org/10.1038/nature07128
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature13177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019026514
    193 https://doi.org/10.1038/nature13177
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nature13191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033015556
    196 https://doi.org/10.1038/nature13191
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature17658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014805303
    199 https://doi.org/10.1038/nature17658
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/srep04623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623986
    202 https://doi.org/10.1038/srep04623
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/srep06814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036638849
    205 https://doi.org/10.1038/srep06814
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/srep07551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028112852
    208 https://doi.org/10.1038/srep07551
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/srep09274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006176022
    211 https://doi.org/10.1038/srep09274
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/srep12918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007984501
    214 https://doi.org/10.1038/srep12918
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/srep16716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021329692
    217 https://doi.org/10.1038/srep16716
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/srep24183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022860886
    220 https://doi.org/10.1038/srep24183
    221 rdf:type schema:CreativeWork
    222 grid-institutes:grid.20513.35 schema:alternateName Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China
    223 schema:name Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...