Distinguished three-qubit ‘magicity’ via automorphisms of the split Cayley hexagon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07

AUTHORS

Michel Planat, Metod Saniga, Frédéric Holweck

ABSTRACT

Disregarding the identity, the remaining 63 elements of the generalized three-qubit Pauli group are found to contain 12096 distinct copies of Mermin’s magic pentagram. Remarkably, 12096 is also the number of automorphisms of the smallest split Cayley hexagon. We give a few solid arguments showing that this may not be a mere coincidence. These arguments are mainly tied to the structure of certain types of geometric hyperplanes of the hexagon. It is further demonstrated that also an -type of magic configurations, recently proposed by Waegell and Aravind (J Phys A Math Theor 45:405301, 2012), seems to be intricately linked with automorphisms of the hexagon. Finally, the entanglement properties exhibited by edges of both pentagrams and these particular Waegell–Aravind configurations are addressed. More... »

PAGES

2535-2549

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-013-0547-3

DOI

http://dx.doi.org/10.1007/s11128-013-0547-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033376177


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Franche Comt\u00e9 \u00c9lectronique M\u00e9canique Thermique et Optique Sciences et Technologies", 
          "id": "https://www.grid.ac/institutes/grid.462068.e", 
          "name": [
            "Institut FEMTO-ST, CNRS, 32 Avenue de l\u2019Observatoire, 25044, Besan\u00e7on, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Planat", 
        "givenName": "Michel", 
        "id": "sg:person.016076407625.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Astronomical Institute", 
          "id": "https://www.grid.ac/institutes/grid.493212.f", 
          "name": [
            "Astronomical Institute, Slovak Academy of Sciences, 05960, Tatransk\u00e1 Lomnica, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saniga", 
        "givenName": "Metod", 
        "id": "sg:person.015610617470.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology of Belfort-Montb\u00e9liard", 
          "id": "https://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "Laboratoire IRTES-M3M, Universit\u00e9 de Technologie de Belfort-Montb\u00e9liard, 90010, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holweck", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.011123560145.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011123560145.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0195-6698(87)80009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003410908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-365x(98)00294-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006238004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/45/40/405301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006835716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/4/045301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027905334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/4/045301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027905334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.124022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028781554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.124022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028781554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/97/50006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029065501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2012-12086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029097492", 
          "https://doi.org/10.1140/epjp/i2012-12086-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927879408824875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033514333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-365x(96)00327-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036071133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03024601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039097670", 
          "https://doi.org/10.1007/bf03024601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-0849-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041217833", 
          "https://doi.org/10.1007/978-94-017-0849-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4773124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042749484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2011.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043162910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ffa.2010.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044343671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4753989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.052306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047063919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.052306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047063919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.022338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053528458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.022338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053528458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1887923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057830608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.1968.17.17004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067510923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3842/sigma.2012.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071452288"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "Disregarding the identity, the remaining 63 elements of the generalized three-qubit Pauli group are found to contain 12096 distinct copies of Mermin\u2019s magic pentagram. Remarkably, 12096 is also the number of automorphisms of the smallest split Cayley hexagon. We give a few solid arguments showing that this may not be a mere coincidence. These arguments are mainly tied to the structure of certain types of geometric hyperplanes of the hexagon. It is further demonstrated that also an -type of magic configurations, recently proposed by Waegell and Aravind (J Phys A Math Theor 45:405301, 2012), seems to be intricately linked with automorphisms of the hexagon. Finally, the entanglement properties exhibited by edges of both pentagrams and these particular Waegell\u2013Aravind configurations are addressed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-013-0547-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Distinguished three-qubit \u2018magicity\u2019 via automorphisms of the split Cayley hexagon", 
    "pagination": "2535-2549", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9eff62c6db3e5ae8155c8aa5af7b707eb733ea3ddb69175eda39fab8576a65f9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-013-0547-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033376177"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-013-0547-3", 
      "https://app.dimensions.ai/details/publication/pub.1033376177"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-013-0547-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-013-0547-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-013-0547-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-013-0547-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-013-0547-3'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-013-0547-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb6af2da3577743b39b1196f1c10babd8
4 schema:citation sg:pub.10.1007/978-94-017-0849-4_10
5 sg:pub.10.1007/bf03024601
6 sg:pub.10.1140/epjp/i2012-12086-x
7 https://doi.org/10.1016/j.ffa.2010.06.003
8 https://doi.org/10.1016/j.physrep.2011.05.001
9 https://doi.org/10.1016/s0012-365x(96)00327-5
10 https://doi.org/10.1016/s0012-365x(98)00294-5
11 https://doi.org/10.1016/s0195-6698(87)80009-4
12 https://doi.org/10.1063/1.1887923
13 https://doi.org/10.1063/1.4753989
14 https://doi.org/10.1063/1.4773124
15 https://doi.org/10.1080/00927879408824875
16 https://doi.org/10.1088/1751-8113/44/4/045301
17 https://doi.org/10.1088/1751-8113/45/40/405301
18 https://doi.org/10.1103/physreva.61.052306
19 https://doi.org/10.1103/physreva.84.022338
20 https://doi.org/10.1103/physrevd.78.124022
21 https://doi.org/10.1103/revmodphys.65.803
22 https://doi.org/10.1209/0295-5075/97/50006
23 https://doi.org/10.1512/iumj.1968.17.17004
24 https://doi.org/10.3842/sigma.2012.083
25 schema:datePublished 2013-07
26 schema:datePublishedReg 2013-07-01
27 schema:description Disregarding the identity, the remaining 63 elements of the generalized three-qubit Pauli group are found to contain 12096 distinct copies of Mermin’s magic pentagram. Remarkably, 12096 is also the number of automorphisms of the smallest split Cayley hexagon. We give a few solid arguments showing that this may not be a mere coincidence. These arguments are mainly tied to the structure of certain types of geometric hyperplanes of the hexagon. It is further demonstrated that also an -type of magic configurations, recently proposed by Waegell and Aravind (J Phys A Math Theor 45:405301, 2012), seems to be intricately linked with automorphisms of the hexagon. Finally, the entanglement properties exhibited by edges of both pentagrams and these particular Waegell–Aravind configurations are addressed.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nc908abd839734f1f89d6e4c1c297b5eb
32 Nf62f66af693d4b7e8441d9caab991660
33 sg:journal.1052742
34 schema:name Distinguished three-qubit ‘magicity’ via automorphisms of the split Cayley hexagon
35 schema:pagination 2535-2549
36 schema:productId N18ff6aa2a56048f599d22f2ba5ee5480
37 N246f67bea4b948a58072778ccd4e7b18
38 N6155bcbded4d4f3084ec5ffa95ef174b
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033376177
40 https://doi.org/10.1007/s11128-013-0547-3
41 schema:sdDatePublished 2019-04-10T20:49
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nb0e3ec31987b495cbf3d54c788679548
44 schema:url http://link.springer.com/10.1007%2Fs11128-013-0547-3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N18ff6aa2a56048f599d22f2ba5ee5480 schema:name readcube_id
49 schema:value 9eff62c6db3e5ae8155c8aa5af7b707eb733ea3ddb69175eda39fab8576a65f9
50 rdf:type schema:PropertyValue
51 N246f67bea4b948a58072778ccd4e7b18 schema:name doi
52 schema:value 10.1007/s11128-013-0547-3
53 rdf:type schema:PropertyValue
54 N6155bcbded4d4f3084ec5ffa95ef174b schema:name dimensions_id
55 schema:value pub.1033376177
56 rdf:type schema:PropertyValue
57 N782a8880479e4ba9b9d5ecb51d0fb3a8 rdf:first sg:person.015610617470.96
58 rdf:rest Na9a8b47709f0425496796eebd3ce146f
59 Na9a8b47709f0425496796eebd3ce146f rdf:first sg:person.011123560145.18
60 rdf:rest rdf:nil
61 Nb0e3ec31987b495cbf3d54c788679548 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nb6af2da3577743b39b1196f1c10babd8 rdf:first sg:person.016076407625.27
64 rdf:rest N782a8880479e4ba9b9d5ecb51d0fb3a8
65 Nc908abd839734f1f89d6e4c1c297b5eb schema:volumeNumber 12
66 rdf:type schema:PublicationVolume
67 Nf62f66af693d4b7e8441d9caab991660 schema:issueNumber 7
68 rdf:type schema:PublicationIssue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1052742 schema:issn 1570-0755
76 1573-1332
77 schema:name Quantum Information Processing
78 rdf:type schema:Periodical
79 sg:person.011123560145.18 schema:affiliation https://www.grid.ac/institutes/grid.23082.3b
80 schema:familyName Holweck
81 schema:givenName Frédéric
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011123560145.18
83 rdf:type schema:Person
84 sg:person.015610617470.96 schema:affiliation https://www.grid.ac/institutes/grid.493212.f
85 schema:familyName Saniga
86 schema:givenName Metod
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96
88 rdf:type schema:Person
89 sg:person.016076407625.27 schema:affiliation https://www.grid.ac/institutes/grid.462068.e
90 schema:familyName Planat
91 schema:givenName Michel
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27
93 rdf:type schema:Person
94 sg:pub.10.1007/978-94-017-0849-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041217833
95 https://doi.org/10.1007/978-94-017-0849-4_10
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf03024601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039097670
98 https://doi.org/10.1007/bf03024601
99 rdf:type schema:CreativeWork
100 sg:pub.10.1140/epjp/i2012-12086-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029097492
101 https://doi.org/10.1140/epjp/i2012-12086-x
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ffa.2010.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044343671
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.physrep.2011.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043162910
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0012-365x(96)00327-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036071133
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0012-365x(98)00294-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006238004
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0195-6698(87)80009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003410908
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.1887923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057830608
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.4753989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046176879
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.4773124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042749484
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/00927879408824875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033514333
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/1751-8113/44/4/045301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027905334
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1751-8113/45/40/405301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006835716
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreva.61.052306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047063919
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.84.022338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053528458
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevd.78.124022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028781554
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/revmodphys.65.803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839301
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1209/0295-5075/97/50006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065501
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1512/iumj.1968.17.17004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067510923
136 rdf:type schema:CreativeWork
137 https://doi.org/10.3842/sigma.2012.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071452288
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.23082.3b schema:alternateName University of Technology of Belfort-Montbéliard
140 schema:name Laboratoire IRTES-M3M, Université de Technologie de Belfort-Montbéliard, 90010, Belfort, France
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.462068.e schema:alternateName Franche Comté Électronique Mécanique Thermique et Optique Sciences et Technologies
143 schema:name Institut FEMTO-ST, CNRS, 32 Avenue de l’Observatoire, 25044, Besançon, France
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.493212.f schema:alternateName Astronomical Institute
146 schema:name Astronomical Institute, Slovak Academy of Sciences, 05960, Tatranská Lomnica, Slovak Republic
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...