Efficiency of open quantum walk implementation of dissipative quantum computing algorithms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Ilya Sinayskiy, Francesco Petruccione

ABSTRACT

An open quantum walk formalism for dissipative quantum computing is presented. The approach is illustrated with the examples of the Toffoli gate and the Quantum Fourier Transform for 3 and 4 qubits. It is shown that the algorithms based on the open quantum walk formalism are more efficient than the canonical dissipative quantum computing approach. In particular, the open quantum walks can be designed to converge faster to the desired steady state and to increase the probability of detection of the outcome of the computation. More... »

PAGES

1301-1309

References to SciGraph publications

Journal

TITLE

Quantum Information Processing

ISSUE

5

VOLUME

11

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-012-0426-3

DOI

http://dx.doi.org/10.1007/s11128-012-0426-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009419828


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "NITheP and School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinayskiy", 
        "givenName": "Ilya", 
        "id": "sg:person.012761660605.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761660605.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "NITheP and School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petruccione", 
        "givenName": "Francesco", 
        "id": "sg:person.0626544263.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626544263.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00107151031000110776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002779437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156318", 
          "https://doi.org/10.1038/nphys1342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008725589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008725589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012216130", 
          "https://doi.org/10.1038/nphys1073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/8/083008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023663752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/8/083008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023663752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.090502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024081707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.090502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024081707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0491-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027446483", 
          "https://doi.org/10.1007/s10955-012-0491-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0960129507006354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035188256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.042307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035636098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.042307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035636098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.180501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041611919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.180501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041611919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2011.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047220554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.022323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048514161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.022323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048514161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051262561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051262561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.1687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.1687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.042330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.042330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1230161213400076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063015620"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "An open quantum walk formalism for dissipative quantum computing is presented. The approach is illustrated with the examples of the Toffoli gate and the Quantum Fourier Transform for 3 and 4 qubits. It is shown that the algorithms based on the open quantum walk formalism are more efficient than the canonical dissipative quantum computing approach. In particular, the open quantum walks can be designed to converge faster to the desired steady state and to increase the probability of detection of the outcome of the computation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-012-0426-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Efficiency of open quantum walk implementation of dissipative quantum computing algorithms", 
    "pagination": "1301-1309", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2cdf4480df8890616971ff9b6f847566bd43150d9795c5a0071484c6310c4d91"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-012-0426-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009419828"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-012-0426-3", 
      "https://app.dimensions.ai/details/publication/pub.1009419828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-012-0426-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-012-0426-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-012-0426-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-012-0426-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-012-0426-3'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-012-0426-3 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N65c8c1ae7ca44ea5aad0b90e79006014
4 schema:citation sg:pub.10.1007/s10955-012-0491-0
5 sg:pub.10.1038/nphys1073
6 sg:pub.10.1038/nphys1342
7 https://doi.org/10.1016/j.physleta.2011.07.010
8 https://doi.org/10.1017/s0960129507006354
9 https://doi.org/10.1080/00107151031000110776
10 https://doi.org/10.1088/1367-2630/11/8/083008
11 https://doi.org/10.1103/physreva.48.1687
12 https://doi.org/10.1103/physreva.67.042315
13 https://doi.org/10.1103/physreva.78.042307
14 https://doi.org/10.1103/physreva.78.062301
15 https://doi.org/10.1103/physreva.81.022323
16 https://doi.org/10.1103/physreva.81.042330
17 https://doi.org/10.1103/physrevlett.102.180501
18 https://doi.org/10.1103/physrevlett.106.090502
19 https://doi.org/10.1142/s1230161213400076
20 schema:datePublished 2012-10
21 schema:datePublishedReg 2012-10-01
22 schema:description An open quantum walk formalism for dissipative quantum computing is presented. The approach is illustrated with the examples of the Toffoli gate and the Quantum Fourier Transform for 3 and 4 qubits. It is shown that the algorithms based on the open quantum walk formalism are more efficient than the canonical dissipative quantum computing approach. In particular, the open quantum walks can be designed to converge faster to the desired steady state and to increase the probability of detection of the outcome of the computation.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N50fedfde024f4304a61ea6e71d11444b
27 N5cc04d5af5324b3197c975382ec94b27
28 sg:journal.1052742
29 schema:name Efficiency of open quantum walk implementation of dissipative quantum computing algorithms
30 schema:pagination 1301-1309
31 schema:productId N8626b4c0ed294f089469157f1b4520d3
32 Nedd30901de4b4896a13ffd06e938ae85
33 Nffd052cc91a04d35a39a050eeada14b0
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009419828
35 https://doi.org/10.1007/s11128-012-0426-3
36 schema:sdDatePublished 2019-04-10T14:12
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N6ada039fdcbb4ca2a97d0b01afad8f79
39 schema:url http://link.springer.com/10.1007%2Fs11128-012-0426-3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N50fedfde024f4304a61ea6e71d11444b schema:volumeNumber 11
44 rdf:type schema:PublicationVolume
45 N5cc04d5af5324b3197c975382ec94b27 schema:issueNumber 5
46 rdf:type schema:PublicationIssue
47 N65c8c1ae7ca44ea5aad0b90e79006014 rdf:first sg:person.012761660605.13
48 rdf:rest N666aa841a6e64833869dbd47273ca104
49 N666aa841a6e64833869dbd47273ca104 rdf:first sg:person.0626544263.62
50 rdf:rest rdf:nil
51 N6ada039fdcbb4ca2a97d0b01afad8f79 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N8626b4c0ed294f089469157f1b4520d3 schema:name readcube_id
54 schema:value 2cdf4480df8890616971ff9b6f847566bd43150d9795c5a0071484c6310c4d91
55 rdf:type schema:PropertyValue
56 Nedd30901de4b4896a13ffd06e938ae85 schema:name doi
57 schema:value 10.1007/s11128-012-0426-3
58 rdf:type schema:PropertyValue
59 Nffd052cc91a04d35a39a050eeada14b0 schema:name dimensions_id
60 schema:value pub.1009419828
61 rdf:type schema:PropertyValue
62 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
66 schema:name Quantum Physics
67 rdf:type schema:DefinedTerm
68 sg:journal.1052742 schema:issn 1570-0755
69 1573-1332
70 schema:name Quantum Information Processing
71 rdf:type schema:Periodical
72 sg:person.012761660605.13 schema:affiliation https://www.grid.ac/institutes/grid.16463.36
73 schema:familyName Sinayskiy
74 schema:givenName Ilya
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761660605.13
76 rdf:type schema:Person
77 sg:person.0626544263.62 schema:affiliation https://www.grid.ac/institutes/grid.16463.36
78 schema:familyName Petruccione
79 schema:givenName Francesco
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626544263.62
81 rdf:type schema:Person
82 sg:pub.10.1007/s10955-012-0491-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027446483
83 https://doi.org/10.1007/s10955-012-0491-0
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/nphys1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012216130
86 https://doi.org/10.1038/nphys1073
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/nphys1342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156318
89 https://doi.org/10.1038/nphys1342
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.physleta.2011.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047220554
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0960129507006354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035188256
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1080/00107151031000110776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002779437
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/1367-2630/11/8/083008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023663752
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreva.48.1687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060487628
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreva.67.042315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051262561
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreva.78.042307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035636098
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physreva.78.062301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008725589
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreva.81.022323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048514161
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.81.042330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060507342
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.102.180501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041611919
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.106.090502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024081707
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1142/s1230161213400076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063015620
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.16463.36 schema:alternateName University of KwaZulu-Natal
118 schema:name NITheP and School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, South Africa
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...