Quantum computing via the Bethe ansatz View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04

AUTHORS

Yong Zhang

ABSTRACT

We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang–Baxter equation) and acts as a parametric two-body quantum gate. We conclude by comparing quantum computing via the factorisable scattering with topological quantum computing. More... »

PAGES

585-590

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-011-0268-4

DOI

http://dx.doi.org/10.1007/s11128-011-0268-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048944935


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Zhuopu Zhonghu Computing Company, 430080, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.51.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000011298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000011298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011143944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011143944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(02)00018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015449553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(02)00018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015449553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1995.0066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028485773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1989.0099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030130365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036486855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036486855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-005-7655-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040156984", 
          "https://doi.org/10.1007/s11128-005-7655-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-005-7655-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040156984", 
          "https://doi.org/10.1007/s11128-005-7655-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049873823", 
          "https://doi.org/10.1038/35042541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049873823", 
          "https://doi.org/10.1038/35042541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-007-0064-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052934795", 
          "https://doi.org/10.1007/s11128-007-0064-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1985.0070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053404391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.1920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.1920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219749905001547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063005737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021974990700302x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063005885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/5552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098905489"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang\u2013Baxter equation) and acts as a parametric two-body quantum gate. We conclude by comparing quantum computing via the factorisable scattering with topological quantum computing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-011-0268-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Quantum computing via the Bethe ansatz", 
    "pagination": "585-590", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e92a4156599e68d8402c5e7ea07f371722fe7d78bc78cca589f7175ddc76ea08"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-011-0268-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048944935"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-011-0268-4", 
      "https://app.dimensions.ai/details/publication/pub.1048944935"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-011-0268-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-011-0268-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-011-0268-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-011-0268-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-011-0268-4'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-011-0268-4 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N761d790bf696430f83aa241186e47317
4 schema:citation sg:pub.10.1007/s11128-005-7655-7
5 sg:pub.10.1007/s11128-007-0064-3
6 sg:pub.10.1038/35042541
7 https://doi.org/10.1016/s0003-4916(02)00018-0
8 https://doi.org/10.1063/1.1704156
9 https://doi.org/10.1098/rspa.1985.0070
10 https://doi.org/10.1098/rspa.1989.0099
11 https://doi.org/10.1098/rspa.1995.0066
12 https://doi.org/10.1103/physrev.168.1920
13 https://doi.org/10.1103/physreva.51.1015
14 https://doi.org/10.1103/physreva.52.3457
15 https://doi.org/10.1103/physreva.57.120
16 https://doi.org/10.1103/physreva.82.052313
17 https://doi.org/10.1103/physrevlett.19.1312
18 https://doi.org/10.1142/5552
19 https://doi.org/10.1142/s0219749905001547
20 https://doi.org/10.1142/s021974990700302x
21 schema:datePublished 2012-04
22 schema:datePublishedReg 2012-04-01
23 schema:description We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang–Baxter equation) and acts as a parametric two-body quantum gate. We conclude by comparing quantum computing via the factorisable scattering with topological quantum computing.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf Na0be4fc973e64f56b6f5ef00cadd493a
28 Ne0f2b674bf544a138a80b2320e29317d
29 sg:journal.1052742
30 schema:name Quantum computing via the Bethe ansatz
31 schema:pagination 585-590
32 schema:productId N6037d60229704220aaf5fce56ef359a5
33 N678cc4dfac6a49faa99f7a00b8d90253
34 Nf1edbf96bfde45e6876e82105f909c56
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048944935
36 https://doi.org/10.1007/s11128-011-0268-4
37 schema:sdDatePublished 2019-04-10T17:34
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N00f8aecbe78449c89aa7daa3af8f5f6c
40 schema:url http://link.springer.com/10.1007%2Fs11128-011-0268-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N00f8aecbe78449c89aa7daa3af8f5f6c schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N0c6d87505c4e40a88a75a362086b1f17 schema:name Zhuopu Zhonghu Computing Company, 430080, Wuhan, People’s Republic of China
47 rdf:type schema:Organization
48 N6037d60229704220aaf5fce56ef359a5 schema:name readcube_id
49 schema:value e92a4156599e68d8402c5e7ea07f371722fe7d78bc78cca589f7175ddc76ea08
50 rdf:type schema:PropertyValue
51 N66a23ab90c47467eba00df52d436d3f1 schema:affiliation N0c6d87505c4e40a88a75a362086b1f17
52 schema:familyName Zhang
53 schema:givenName Yong
54 rdf:type schema:Person
55 N678cc4dfac6a49faa99f7a00b8d90253 schema:name doi
56 schema:value 10.1007/s11128-011-0268-4
57 rdf:type schema:PropertyValue
58 N761d790bf696430f83aa241186e47317 rdf:first N66a23ab90c47467eba00df52d436d3f1
59 rdf:rest rdf:nil
60 Na0be4fc973e64f56b6f5ef00cadd493a schema:volumeNumber 11
61 rdf:type schema:PublicationVolume
62 Ne0f2b674bf544a138a80b2320e29317d schema:issueNumber 2
63 rdf:type schema:PublicationIssue
64 Nf1edbf96bfde45e6876e82105f909c56 schema:name dimensions_id
65 schema:value pub.1048944935
66 rdf:type schema:PropertyValue
67 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
68 schema:name Physical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
71 schema:name Quantum Physics
72 rdf:type schema:DefinedTerm
73 sg:journal.1052742 schema:issn 1570-0755
74 1573-1332
75 schema:name Quantum Information Processing
76 rdf:type schema:Periodical
77 sg:pub.10.1007/s11128-005-7655-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040156984
78 https://doi.org/10.1007/s11128-005-7655-7
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s11128-007-0064-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052934795
81 https://doi.org/10.1007/s11128-007-0064-3
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/35042541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049873823
84 https://doi.org/10.1038/35042541
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/s0003-4916(02)00018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015449553
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.1704156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774098
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1098/rspa.1985.0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053404391
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1098/rspa.1989.0099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030130365
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1098/rspa.1995.0066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028485773
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrev.168.1920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060438008
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physreva.51.1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000011298
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physreva.52.3457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036486855
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physreva.57.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048023467
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physreva.82.052313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011143944
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.19.1312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770149
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1142/5552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098905489
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1142/s0219749905001547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063005737
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1142/s021974990700302x schema:sameAs https://app.dimensions.ai/details/publication/pub.1063005885
113 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...