Exact canonical decomposition of two-qubit operators in terms of CNOT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

Mark W. Coffey, Ron Deiotte

ABSTRACT

The canonical decomposition for two-qubit operators has proven very useful for applications in quantum computing. This decomposition generates equivalence classes up to local quantum gates. We provide a variety of complete, explicit decompositions of given two-qubit operators in terms of single, double, and triple controlled-NOT (CNOT) gates. By analytically addressing the needed pre- and post-tensor product factors, we demonstrate that exact results are possible, even when a parameter is included. The examples given are of interest to superconducting qubit, spin-based, dipolar molecule, and other quantum information processing systems. More... »

PAGES

681-691

References to SciGraph publications

Journal

TITLE

Quantum Information Processing

ISSUE

6

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-009-0156-3

DOI

http://dx.doi.org/10.1007/s11128-009-0156-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028678167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coffey", 
        "givenName": "Mark W.", 
        "id": "sg:person.015514174277.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deiotte", 
        "givenName": "Ron", 
        "id": "sg:person.012271035421.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271035421.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.69.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.172505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009330539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.172505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009330539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012539794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012539794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.197901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019472700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.197901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019472700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.012310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.012310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022144002391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023058874", 
          "https://doi.org/10.1023/a:1022144002391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.094506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023235813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.094506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023235813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/40/31/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033106145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037730438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037730438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039696397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039696397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.012318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040075623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.012318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040075623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.052317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042054060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.052317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042054060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.052317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042054060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.542381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053659374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.066301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.066301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.012313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.012313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504691"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "The canonical decomposition for two-qubit operators has proven very useful for applications in quantum computing. This decomposition generates equivalence classes up to local quantum gates. We provide a variety of complete, explicit decompositions of given two-qubit operators in terms of single, double, and triple controlled-NOT (CNOT) gates. By analytically addressing the needed pre- and post-tensor product factors, we demonstrate that exact results are possible, even when a parameter is included. The examples given are of interest to superconducting qubit, spin-based, dipolar molecule, and other quantum information processing systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-009-0156-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Exact canonical decomposition of two-qubit operators in terms of CNOT", 
    "pagination": "681-691", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "889d0e0339bfbe3c0922b1389bc41ff94dde525454dbb1f437641566d240c604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-009-0156-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028678167"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-009-0156-3", 
      "https://app.dimensions.ai/details/publication/pub.1028678167"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-009-0156-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0156-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0156-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0156-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0156-3'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-009-0156-3 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N7bbc3f6d5f1446faa4ebbceb9934c5ab
4 schema:citation sg:pub.10.1023/a:1022144002391
5 https://doi.org/10.1088/1751-8113/40/31/021
6 https://doi.org/10.1103/physreva.67.042313
7 https://doi.org/10.1103/physreva.68.012318
8 https://doi.org/10.1103/physreva.68.052311
9 https://doi.org/10.1103/physreva.69.010301
10 https://doi.org/10.1103/physreva.69.032315
11 https://doi.org/10.1103/physreva.70.012310
12 https://doi.org/10.1103/physreva.70.052313
13 https://doi.org/10.1103/physreva.71.052317
14 https://doi.org/10.1103/physreva.77.066301
15 https://doi.org/10.1103/physreva.78.012313
16 https://doi.org/10.1103/physrevb.73.094506
17 https://doi.org/10.1103/physrevb.74.172505
18 https://doi.org/10.1103/physrevlett.90.197901
19 https://doi.org/10.1117/12.542381
20 schema:datePublished 2010-12
21 schema:datePublishedReg 2010-12-01
22 schema:description The canonical decomposition for two-qubit operators has proven very useful for applications in quantum computing. This decomposition generates equivalence classes up to local quantum gates. We provide a variety of complete, explicit decompositions of given two-qubit operators in terms of single, double, and triple controlled-NOT (CNOT) gates. By analytically addressing the needed pre- and post-tensor product factors, we demonstrate that exact results are possible, even when a parameter is included. The examples given are of interest to superconducting qubit, spin-based, dipolar molecule, and other quantum information processing systems.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N28bd1d41b51f4c8298479e4764b73161
27 N91a2848dc25145348a9ceec58977bd88
28 sg:journal.1052742
29 schema:name Exact canonical decomposition of two-qubit operators in terms of CNOT
30 schema:pagination 681-691
31 schema:productId N1631403d0cff4ed5890304e511693ea6
32 N293fa8cd000845819752e725327cd4ac
33 N35d9385e6066444198f5f450f4ccbb7b
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028678167
35 https://doi.org/10.1007/s11128-009-0156-3
36 schema:sdDatePublished 2019-04-10T20:49
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N21c635bb0ab64111aabc3675d3b50fd6
39 schema:url http://link.springer.com/10.1007%2Fs11128-009-0156-3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1631403d0cff4ed5890304e511693ea6 schema:name doi
44 schema:value 10.1007/s11128-009-0156-3
45 rdf:type schema:PropertyValue
46 N21c635bb0ab64111aabc3675d3b50fd6 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N28bd1d41b51f4c8298479e4764b73161 schema:issueNumber 6
49 rdf:type schema:PublicationIssue
50 N293fa8cd000845819752e725327cd4ac schema:name dimensions_id
51 schema:value pub.1028678167
52 rdf:type schema:PropertyValue
53 N35d9385e6066444198f5f450f4ccbb7b schema:name readcube_id
54 schema:value 889d0e0339bfbe3c0922b1389bc41ff94dde525454dbb1f437641566d240c604
55 rdf:type schema:PropertyValue
56 N7bbc3f6d5f1446faa4ebbceb9934c5ab rdf:first sg:person.015514174277.73
57 rdf:rest N8cc3d940d75a4ed587472d7eed91cd01
58 N8cc3d940d75a4ed587472d7eed91cd01 rdf:first sg:person.012271035421.08
59 rdf:rest rdf:nil
60 N91a2848dc25145348a9ceec58977bd88 schema:volumeNumber 9
61 rdf:type schema:PublicationVolume
62 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
66 schema:name Quantum Physics
67 rdf:type schema:DefinedTerm
68 sg:journal.1052742 schema:issn 1570-0755
69 1573-1332
70 schema:name Quantum Information Processing
71 rdf:type schema:Periodical
72 sg:person.012271035421.08 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
73 schema:familyName Deiotte
74 schema:givenName Ron
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271035421.08
76 rdf:type schema:Person
77 sg:person.015514174277.73 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
78 schema:familyName Coffey
79 schema:givenName Mark W.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73
81 rdf:type schema:Person
82 sg:pub.10.1023/a:1022144002391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058874
83 https://doi.org/10.1023/a:1022144002391
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1088/1751-8113/40/31/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033106145
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physreva.67.042313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037730438
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physreva.68.012318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040075623
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physreva.68.052311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012539794
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreva.69.010301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021129127
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physreva.69.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001486495
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreva.70.012310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022959379
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreva.70.052313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039696397
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreva.71.052317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042054060
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreva.77.066301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060504668
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physreva.78.012313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060504691
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.73.094506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023235813
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.74.172505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009330539
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.90.197901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019472700
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1117/12.542381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053659374
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
116 schema:name Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...