Quantum computing algorithm for electromagnetic field simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-06

AUTHORS

Siddhartha Sinha, Peter Russer

ABSTRACT

Quantum computing offers new concepts for the simulation of complex physical systems. A quantum computing algorithm for electromagnetic field simulation is presented here. The electromagnetic field simulation is performed on the basis of the Transmission Line Matrix (TLM) method. The Hilbert space formulation of TLM allows us to obtain a time evolution operator for the TLM method, which can then be interpreted as the time evolution operator of a quantum system, thus yielding a quantum computing algorithm. Further, the quantum simulation is done within the framework of the quantum circuit model of computation. Our aim has been to address the design problem in electromagnetics—given an initial condition and a final field distribution, find the structures which satisfy these. Quantum computing offers us the possibility to solve this problem from first principles. Using quantum parallelism we simulate a large number of electromagnetic structures in parallel in time and then try to filter out the ones which have the required field distribution. More... »

PAGES

385-404

References to SciGraph publications

  • 2000. Applications of TLM to EMC Problems in APPLIED COMPUTATIONAL ELECTROMAGNETICS
  • 1982-06. Simulating physics with computers in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2000. Application of TLM to Microwave Circuits in APPLIED COMPUTATIONAL ELECTROMAGNETICS
  • 2002-04. Quantum Lattice-Gas Model for the Burgers Equation in JOURNAL OF STATISTICAL PHYSICS
  • 2003-04. Experimental Demonstration of Quantum Lattice Gas Computation in QUANTUM INFORMATION PROCESSING
  • 2005-03. Quantum computing with realistically noisy devices in NATURE
  • 2006-12. Dephasing of Quantum Bits by a Quasi-Static Mesoscopic Environment in QUANTUM INFORMATION PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11128-009-0133-x

    DOI

    http://dx.doi.org/10.1007/s11128-009-0133-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017135507


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical University Munich", 
              "id": "https://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Institute for High Frequency Engineering, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sinha", 
            "givenName": "Siddhartha", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University Munich", 
              "id": "https://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Institute for High Frequency Engineering, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russer", 
            "givenName": "Peter", 
            "id": "sg:person.010151670463.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010151670463.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11128-006-0036-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002586676", 
              "https://doi.org/10.1007/s11128-006-0036-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1998.0248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007367525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025835216975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007424486", 
              "https://doi.org/10.1023/a:1025835216975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jnm.1660070207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013460021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jnm.1660070207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013460021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59629-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014031044", 
              "https://doi.org/10.1007/978-3-642-59629-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59629-2_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015483729", 
              "https://doi.org/10.1007/978-3-642-59629-2_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014514805610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022665703", 
              "https://doi.org/10.1023/a:1014514805610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/61/2/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026465273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jnm.1660060105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028127728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jnm.1660060105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028127728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032975547", 
              "https://doi.org/10.1038/nature03350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032975547", 
              "https://doi.org/10.1038/nature03350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-3978(200009)48:9/11<1055::aid-prop1055>3.0.co;2-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035217960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02650179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038336282", 
              "https://doi.org/10.1007/bf02650179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.54.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040345428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.54.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040345428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2001.0936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042695302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.4709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043294810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.4709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043294810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00107519608217543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052592806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1985.0070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053404391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.66.012310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060498382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.66.012310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060498382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.046702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060726644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.046702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060726644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/22.310559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061123760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2004.833672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.1969.1066403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061666220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmtt.1985.1133146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061704839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5234.255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5278.1073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.281.5378.792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062562039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144598347011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129183101002656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062903946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129183101002668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062903947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129183198001436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062906921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1994.365700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095740049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109387665", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109387665", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-06", 
        "datePublishedReg": "2010-06-01", 
        "description": "Quantum computing offers new concepts for the simulation of complex physical systems. A quantum computing algorithm for electromagnetic field simulation is presented here. The electromagnetic field simulation is performed on the basis of the Transmission Line Matrix (TLM) method. The Hilbert space formulation of TLM allows us to obtain a time evolution operator for the TLM method, which can then be interpreted as the time evolution operator of a quantum system, thus yielding a quantum computing algorithm. Further, the quantum simulation is done within the framework of the quantum circuit model of computation. Our aim has been to address the design problem in electromagnetics\u2014given an initial condition and a final field distribution, find the structures which satisfy these. Quantum computing offers us the possibility to solve this problem from first principles. Using quantum parallelism we simulate a large number of electromagnetic structures in parallel in time and then try to filter out the ones which have the required field distribution.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11128-009-0133-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052742", 
            "issn": [
              "1570-0755", 
              "1573-1332"
            ], 
            "name": "Quantum Information Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Quantum computing algorithm for electromagnetic field simulation", 
        "pagination": "385-404", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "51a3d65eb68c594f1fc2e948eb4c6a9145c994c458611c21a8ded6258daca8c9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11128-009-0133-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017135507"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11128-009-0133-x", 
          "https://app.dimensions.ai/details/publication/pub.1017135507"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11128-009-0133-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0133-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0133-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0133-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-009-0133-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11128-009-0133-x schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N5f3f8fc29af94a9f8ef2236c2dbc31c4
    4 schema:citation sg:pub.10.1007/978-3-642-59629-2_19
    5 sg:pub.10.1007/978-3-642-59629-2_20
    6 sg:pub.10.1007/bf02650179
    7 sg:pub.10.1007/s11128-006-0036-z
    8 sg:pub.10.1023/a:1014514805610
    9 sg:pub.10.1023/a:1025835216975
    10 sg:pub.10.1038/nature03350
    11 https://app.dimensions.ai/details/publication/pub.1109387665
    12 https://doi.org/10.1002/1521-3978(200009)48:9/11<1055::aid-prop1055>3.0.co;2-1
    13 https://doi.org/10.1002/jnm.1660060105
    14 https://doi.org/10.1002/jnm.1660070207
    15 https://doi.org/10.1080/00107519608217543
    16 https://doi.org/10.1088/0034-4885/61/2/002
    17 https://doi.org/10.1098/rspa.1985.0070
    18 https://doi.org/10.1098/rsta.1998.0248
    19 https://doi.org/10.1098/rsta.2001.0936
    20 https://doi.org/10.1103/physreva.54.139
    21 https://doi.org/10.1103/physreva.66.012310
    22 https://doi.org/10.1103/physreve.63.046702
    23 https://doi.org/10.1103/physrevlett.79.4709
    24 https://doi.org/10.1109/22.310559
    25 https://doi.org/10.1109/jproc.2004.833672
    26 https://doi.org/10.1109/sfcs.1994.365700
    27 https://doi.org/10.1109/tmag.1969.1066403
    28 https://doi.org/10.1109/tmtt.1985.1133146
    29 https://doi.org/10.1126/science.270.5234.255
    30 https://doi.org/10.1126/science.273.5278.1073
    31 https://doi.org/10.1126/science.281.5378.792
    32 https://doi.org/10.1137/s0036144598347011
    33 https://doi.org/10.1142/s0129183101002656
    34 https://doi.org/10.1142/s0129183101002668
    35 https://doi.org/10.1142/s0129183198001436
    36 schema:datePublished 2010-06
    37 schema:datePublishedReg 2010-06-01
    38 schema:description Quantum computing offers new concepts for the simulation of complex physical systems. A quantum computing algorithm for electromagnetic field simulation is presented here. The electromagnetic field simulation is performed on the basis of the Transmission Line Matrix (TLM) method. The Hilbert space formulation of TLM allows us to obtain a time evolution operator for the TLM method, which can then be interpreted as the time evolution operator of a quantum system, thus yielding a quantum computing algorithm. Further, the quantum simulation is done within the framework of the quantum circuit model of computation. Our aim has been to address the design problem in electromagnetics—given an initial condition and a final field distribution, find the structures which satisfy these. Quantum computing offers us the possibility to solve this problem from first principles. Using quantum parallelism we simulate a large number of electromagnetic structures in parallel in time and then try to filter out the ones which have the required field distribution.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N3c21ad62ed8e400eab61fd0010d98ad5
    43 Nde989bd806104ca2bb466897ed5f43ac
    44 sg:journal.1052742
    45 schema:name Quantum computing algorithm for electromagnetic field simulation
    46 schema:pagination 385-404
    47 schema:productId N314f278c09824998af76404e40561f6e
    48 N6ab61d84052040c79f2e5645eb35b039
    49 Na8a29709a16b40bb80e5ac74e8d75332
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017135507
    51 https://doi.org/10.1007/s11128-009-0133-x
    52 schema:sdDatePublished 2019-04-11T09:39
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Ndfa502d3b0c14071b14c7884eec71d1b
    55 schema:url http://link.springer.com/10.1007%2Fs11128-009-0133-x
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N314f278c09824998af76404e40561f6e schema:name readcube_id
    60 schema:value 51a3d65eb68c594f1fc2e948eb4c6a9145c994c458611c21a8ded6258daca8c9
    61 rdf:type schema:PropertyValue
    62 N3c21ad62ed8e400eab61fd0010d98ad5 schema:volumeNumber 9
    63 rdf:type schema:PublicationVolume
    64 N54d5857dbc9a433c80491182ed14d371 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
    65 schema:familyName Sinha
    66 schema:givenName Siddhartha
    67 rdf:type schema:Person
    68 N5f3f8fc29af94a9f8ef2236c2dbc31c4 rdf:first N54d5857dbc9a433c80491182ed14d371
    69 rdf:rest Nac7bb8d33b9a44929bf3a47b845c7a6c
    70 N6ab61d84052040c79f2e5645eb35b039 schema:name dimensions_id
    71 schema:value pub.1017135507
    72 rdf:type schema:PropertyValue
    73 Na8a29709a16b40bb80e5ac74e8d75332 schema:name doi
    74 schema:value 10.1007/s11128-009-0133-x
    75 rdf:type schema:PropertyValue
    76 Nac7bb8d33b9a44929bf3a47b845c7a6c rdf:first sg:person.010151670463.27
    77 rdf:rest rdf:nil
    78 Nde989bd806104ca2bb466897ed5f43ac schema:issueNumber 3
    79 rdf:type schema:PublicationIssue
    80 Ndfa502d3b0c14071b14c7884eec71d1b schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Information and Computing Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Computation Theory and Mathematics
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1052742 schema:issn 1570-0755
    89 1573-1332
    90 schema:name Quantum Information Processing
    91 rdf:type schema:Periodical
    92 sg:person.010151670463.27 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
    93 schema:familyName Russer
    94 schema:givenName Peter
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010151670463.27
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-3-642-59629-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014031044
    98 https://doi.org/10.1007/978-3-642-59629-2_19
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-3-642-59629-2_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015483729
    101 https://doi.org/10.1007/978-3-642-59629-2_20
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
    104 https://doi.org/10.1007/bf02650179
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11128-006-0036-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002586676
    107 https://doi.org/10.1007/s11128-006-0036-z
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1023/a:1014514805610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022665703
    110 https://doi.org/10.1023/a:1014514805610
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1023/a:1025835216975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007424486
    113 https://doi.org/10.1023/a:1025835216975
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/nature03350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032975547
    116 https://doi.org/10.1038/nature03350
    117 rdf:type schema:CreativeWork
    118 https://app.dimensions.ai/details/publication/pub.1109387665 schema:CreativeWork
    119 https://doi.org/10.1002/1521-3978(200009)48:9/11<1055::aid-prop1055>3.0.co;2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035217960
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1002/jnm.1660060105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028127728
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1002/jnm.1660070207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013460021
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1080/00107519608217543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052592806
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1088/0034-4885/61/2/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026465273
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1098/rspa.1985.0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053404391
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1098/rsta.1998.0248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367525
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1098/rsta.2001.0936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042695302
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physreva.54.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040345428
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physreva.66.012310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060498382
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physreve.63.046702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060726644
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.79.4709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043294810
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/22.310559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061123760
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/jproc.2004.833672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296317
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tmag.1969.1066403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061666220
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tmtt.1985.1133146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061704839
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1126/science.270.5234.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551433
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1126/science.273.5278.1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553940
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1126/science.281.5378.792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062562039
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1137/s0036144598347011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877995
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1142/s0129183101002656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903946
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1142/s0129183101002668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903947
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1142/s0129183198001436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906921
    166 rdf:type schema:CreativeWork
    167 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
    168 schema:name Institute for High Frequency Engineering, Technische Universität München, Arcisstrasse 21, 80333, Munich, Germany
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...