Quantum lattice gas approach for the Maxwell equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-12

AUTHORS

Mark W. Coffey

ABSTRACT

We show that a quantum lattice gas approach can provide a viable means for numerically solving the classical Maxwell equations. By casting the Maxwell equations in Dirac form, the propagator may be discretized, and we describe how the accuracy relative to the time step may be systematically increased. The quantum lattice gas form of the discretization is suitable for implementation on hybrid classical-quantum computers. We discuss a number of extensions, including application to inhomogeneous media. More... »

PAGES

275

Journal

TITLE

Quantum Information Processing

ISSUE

6

VOLUME

7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-008-0088-3

DOI

http://dx.doi.org/10.1007/s11128-008-0088-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024303374


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coffey", 
        "givenName": "Mark W.", 
        "id": "sg:person.015514174277.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0010-4655(02)00425-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018920961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(02)01599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020132866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(02)01599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020132866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014514805610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022665703", 
          "https://doi.org/10.1023/a:1014514805610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2005.1618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036488496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2005.1618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036488496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.6920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039699012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.6920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039699012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90335-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046966447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90335-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046966447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-005-6492-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048246771", 
          "https://doi.org/10.1007/s11128-005-6492-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-005-6492-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048246771", 
          "https://doi.org/10.1007/s11128-005-6492-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(02)00419-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053652605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.529425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.113.1670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.113.1670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.042321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.042321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.046702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.046702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183198001436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062906921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12693/aphyspola.86.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064627021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511524714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667606"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "We show that a quantum lattice gas approach can provide a viable means for numerically solving the classical Maxwell equations. By casting the Maxwell equations in Dirac form, the propagator may be discretized, and we describe how the accuracy relative to the time step may be systematically increased. The quantum lattice gas form of the discretization is suitable for implementation on hybrid classical-quantum computers. We discuss a number of extensions, including application to inhomogeneous media.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-008-0088-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Quantum lattice gas approach for the Maxwell equations", 
    "pagination": "275", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "73c8b5aeacd0aa7f1aa6e6066b272b87f69d0c95b43c0864f015c1ce589f64df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-008-0088-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024303374"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-008-0088-3", 
      "https://app.dimensions.ai/details/publication/pub.1024303374"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-008-0088-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0088-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0088-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0088-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0088-3'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-008-0088-3 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N7e19405e699744c59b398c5292e6fc3f
4 schema:citation sg:pub.10.1007/s11128-005-6492-z
5 sg:pub.10.1023/a:1014514805610
6 https://doi.org/10.1016/0375-9601(92)90335-j
7 https://doi.org/10.1016/s0010-4655(02)00419-8
8 https://doi.org/10.1016/s0010-4655(02)00425-3
9 https://doi.org/10.1016/s0375-9601(02)01599-2
10 https://doi.org/10.1017/cbo9780511524714
11 https://doi.org/10.1063/1.529425
12 https://doi.org/10.1098/rsta.2005.1618
13 https://doi.org/10.1103/physrev.113.1670
14 https://doi.org/10.1103/physreva.74.042321
15 https://doi.org/10.1103/physrevd.49.6920
16 https://doi.org/10.1103/physreve.57.54
17 https://doi.org/10.1103/physreve.63.046702
18 https://doi.org/10.1142/s0129183198001436
19 https://doi.org/10.12693/aphyspola.86.97
20 schema:datePublished 2008-12
21 schema:datePublishedReg 2008-12-01
22 schema:description We show that a quantum lattice gas approach can provide a viable means for numerically solving the classical Maxwell equations. By casting the Maxwell equations in Dirac form, the propagator may be discretized, and we describe how the accuracy relative to the time step may be systematically increased. The quantum lattice gas form of the discretization is suitable for implementation on hybrid classical-quantum computers. We discuss a number of extensions, including application to inhomogeneous media.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2526567b14234485ac29dac453a7849f
27 Na14b8bcafdd14d198bf8626d167b40b0
28 sg:journal.1052742
29 schema:name Quantum lattice gas approach for the Maxwell equations
30 schema:pagination 275
31 schema:productId Nb38a382688d54f45ad080eeb2259744b
32 Nd3e08b71d5784d6d933f410cc3dcbc7c
33 Nf183389018824c4e9334ca7e1821aff0
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024303374
35 https://doi.org/10.1007/s11128-008-0088-3
36 schema:sdDatePublished 2019-04-10T22:34
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Na270b75c34c64923bbbe5b5114457598
39 schema:url http://link.springer.com/10.1007%2Fs11128-008-0088-3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N2526567b14234485ac29dac453a7849f schema:issueNumber 6
44 rdf:type schema:PublicationIssue
45 N7e19405e699744c59b398c5292e6fc3f rdf:first sg:person.015514174277.73
46 rdf:rest rdf:nil
47 Na14b8bcafdd14d198bf8626d167b40b0 schema:volumeNumber 7
48 rdf:type schema:PublicationVolume
49 Na270b75c34c64923bbbe5b5114457598 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nb38a382688d54f45ad080eeb2259744b schema:name doi
52 schema:value 10.1007/s11128-008-0088-3
53 rdf:type schema:PropertyValue
54 Nd3e08b71d5784d6d933f410cc3dcbc7c schema:name readcube_id
55 schema:value 73c8b5aeacd0aa7f1aa6e6066b272b87f69d0c95b43c0864f015c1ce589f64df
56 rdf:type schema:PropertyValue
57 Nf183389018824c4e9334ca7e1821aff0 schema:name dimensions_id
58 schema:value pub.1024303374
59 rdf:type schema:PropertyValue
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
64 schema:name Quantum Physics
65 rdf:type schema:DefinedTerm
66 sg:journal.1052742 schema:issn 1570-0755
67 1573-1332
68 schema:name Quantum Information Processing
69 rdf:type schema:Periodical
70 sg:person.015514174277.73 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
71 schema:familyName Coffey
72 schema:givenName Mark W.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73
74 rdf:type schema:Person
75 sg:pub.10.1007/s11128-005-6492-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048246771
76 https://doi.org/10.1007/s11128-005-6492-z
77 rdf:type schema:CreativeWork
78 sg:pub.10.1023/a:1014514805610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022665703
79 https://doi.org/10.1023/a:1014514805610
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0375-9601(92)90335-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1046966447
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s0010-4655(02)00419-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053652605
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0010-4655(02)00425-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018920961
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0375-9601(02)01599-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020132866
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1017/cbo9780511524714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667606
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.529425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106440
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1098/rsta.2005.1618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036488496
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrev.113.1670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421312
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreva.74.042321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060502604
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevd.49.6920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039699012
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreve.57.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060722298
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreve.63.046702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060726644
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1142/s0129183198001436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906921
106 rdf:type schema:CreativeWork
107 https://doi.org/10.12693/aphyspola.86.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064627021
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
110 schema:name Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...