Relation of operator Schmidt decomposition and CNOT complexity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

Mark W. Coffey, Ron Deiotte

ABSTRACT

We consider two-qubit operators and provide a correspondence between their Schmidt number and controlled-NOT (CNOT) complexity, where the CNOT complexity is up to local unitary operations. The results are obtained by complementary means, and a number of examples are given.

PAGES

117-124

References to SciGraph publications

Journal

TITLE

Quantum Information Processing

ISSUE

2-3

VOLUME

7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6

DOI

http://dx.doi.org/10.1007/s11128-008-0077-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051512303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coffey", 
        "givenName": "Mark W.", 
        "id": "sg:person.015514174277.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deiotte", 
        "givenName": "Ron", 
        "id": "sg:person.012271035421.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271035421.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.69.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012539794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012539794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.012310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.012310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022144002391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023058874", 
          "https://doi.org/10.1023/a:1022144002391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/40/31/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033106145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037730438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037730438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.012318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040075623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.012318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040075623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046771841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046771841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048604711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048604711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051622412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051622412"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "We consider two-qubit operators and provide a correspondence between their Schmidt number and controlled-NOT (CNOT) complexity, where the CNOT complexity is up to local unitary operations. The results are obtained by complementary means, and a number of examples are given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-008-0077-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Relation of operator Schmidt decomposition and CNOT complexity", 
    "pagination": "117-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f562014aa571339c663fea645a743127fae6f099c945b79c3903f259e37bb1c3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-008-0077-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051512303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-008-0077-6", 
      "https://app.dimensions.ai/details/publication/pub.1051512303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-008-0077-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-008-0077-6 schema:author Ne16bfd25646d4e9398894c8e238214fb
2 schema:citation sg:pub.10.1023/a:1022144002391
3 https://doi.org/10.1088/1751-8113/40/31/021
4 https://doi.org/10.1103/physreva.67.042313
5 https://doi.org/10.1103/physreva.67.052301
6 https://doi.org/10.1103/physreva.68.012318
7 https://doi.org/10.1103/physreva.68.052311
8 https://doi.org/10.1103/physreva.69.010301
9 https://doi.org/10.1103/physreva.69.032315
10 https://doi.org/10.1103/physreva.70.012310
11 https://doi.org/10.1103/physreva.72.052323
12 https://doi.org/10.1103/physrevlett.89.057901
13 schema:datePublished 2008-06
14 schema:datePublishedReg 2008-06-01
15 schema:description We consider two-qubit operators and provide a correspondence between their Schmidt number and controlled-NOT (CNOT) complexity, where the CNOT complexity is up to local unitary operations. The results are obtained by complementary means, and a number of examples are given.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N619f35c4ed3540929ed145521de26160
20 N64517ca8c80049628dc0399dc122c604
21 sg:journal.1052742
22 schema:name Relation of operator Schmidt decomposition and CNOT complexity
23 schema:pagination 117-124
24 schema:productId N085efdd4f41b4dd3933303a2b2b96b2f
25 N25847d0f1a934dfb8daaabd153d2ef67
26 N41e2ff643f864da18aa646ec9f84e711
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051512303
28 https://doi.org/10.1007/s11128-008-0077-6
29 schema:sdDatePublished 2019-04-10T14:22
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N5d57b10e40b64c50ac286956d8cde79c
32 schema:url http://link.springer.com/10.1007%2Fs11128-008-0077-6
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N085efdd4f41b4dd3933303a2b2b96b2f schema:name dimensions_id
37 schema:value pub.1051512303
38 rdf:type schema:PropertyValue
39 N25847d0f1a934dfb8daaabd153d2ef67 schema:name readcube_id
40 schema:value f562014aa571339c663fea645a743127fae6f099c945b79c3903f259e37bb1c3
41 rdf:type schema:PropertyValue
42 N41e2ff643f864da18aa646ec9f84e711 schema:name doi
43 schema:value 10.1007/s11128-008-0077-6
44 rdf:type schema:PropertyValue
45 N5d57b10e40b64c50ac286956d8cde79c schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N619f35c4ed3540929ed145521de26160 schema:volumeNumber 7
48 rdf:type schema:PublicationVolume
49 N64517ca8c80049628dc0399dc122c604 schema:issueNumber 2-3
50 rdf:type schema:PublicationIssue
51 Na166de82aefd492a8f1a1659b7287567 rdf:first sg:person.012271035421.08
52 rdf:rest rdf:nil
53 Ne16bfd25646d4e9398894c8e238214fb rdf:first sg:person.015514174277.73
54 rdf:rest Na166de82aefd492a8f1a1659b7287567
55 sg:journal.1052742 schema:issn 1570-0755
56 1573-1332
57 schema:name Quantum Information Processing
58 rdf:type schema:Periodical
59 sg:person.012271035421.08 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
60 schema:familyName Deiotte
61 schema:givenName Ron
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271035421.08
63 rdf:type schema:Person
64 sg:person.015514174277.73 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
65 schema:familyName Coffey
66 schema:givenName Mark W.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73
68 rdf:type schema:Person
69 sg:pub.10.1023/a:1022144002391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058874
70 https://doi.org/10.1023/a:1022144002391
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1088/1751-8113/40/31/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033106145
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/physreva.67.042313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037730438
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physreva.67.052301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051622412
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physreva.68.012318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040075623
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physreva.68.052311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012539794
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreva.69.010301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021129127
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreva.69.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001486495
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physreva.70.012310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022959379
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physreva.72.052323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046771841
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.89.057901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048604711
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
93 schema:name Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...