Relation of operator Schmidt decomposition and CNOT complexity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

Mark W. Coffey, Ron Deiotte

ABSTRACT

We consider two-qubit operators and provide a correspondence between their Schmidt number and controlled-NOT (CNOT) complexity, where the CNOT complexity is up to local unitary operations. The results are obtained by complementary means, and a number of examples are given.

PAGES

117-124

References to SciGraph publications

Journal

TITLE

Quantum Information Processing

ISSUE

2-3

VOLUME

7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6

DOI

http://dx.doi.org/10.1007/s11128-008-0077-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051512303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coffey", 
        "givenName": "Mark W.", 
        "id": "sg:person.015514174277.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deiotte", 
        "givenName": "Ron", 
        "id": "sg:person.012271035421.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271035421.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.69.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012539794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012539794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.012310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.012310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022144002391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023058874", 
          "https://doi.org/10.1023/a:1022144002391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/40/31/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033106145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037730438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.042313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037730438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.012318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040075623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.012318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040075623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046771841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046771841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048604711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048604711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051622412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051622412"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "We consider two-qubit operators and provide a correspondence between their Schmidt number and controlled-NOT (CNOT) complexity, where the CNOT complexity is up to local unitary operations. The results are obtained by complementary means, and a number of examples are given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-008-0077-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Relation of operator Schmidt decomposition and CNOT complexity", 
    "pagination": "117-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f562014aa571339c663fea645a743127fae6f099c945b79c3903f259e37bb1c3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-008-0077-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051512303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-008-0077-6", 
      "https://app.dimensions.ai/details/publication/pub.1051512303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-008-0077-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-008-0077-6'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-008-0077-6 schema:author N04169a8bd96d4ad8bb397f9113afd9ed
2 schema:citation sg:pub.10.1023/a:1022144002391
3 https://doi.org/10.1088/1751-8113/40/31/021
4 https://doi.org/10.1103/physreva.67.042313
5 https://doi.org/10.1103/physreva.67.052301
6 https://doi.org/10.1103/physreva.68.012318
7 https://doi.org/10.1103/physreva.68.052311
8 https://doi.org/10.1103/physreva.69.010301
9 https://doi.org/10.1103/physreva.69.032315
10 https://doi.org/10.1103/physreva.70.012310
11 https://doi.org/10.1103/physreva.72.052323
12 https://doi.org/10.1103/physrevlett.89.057901
13 schema:datePublished 2008-06
14 schema:datePublishedReg 2008-06-01
15 schema:description We consider two-qubit operators and provide a correspondence between their Schmidt number and controlled-NOT (CNOT) complexity, where the CNOT complexity is up to local unitary operations. The results are obtained by complementary means, and a number of examples are given.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N7fec0de0e9fa4991971bfb7f3943ad60
20 N9d0c51908beb4c19891ff1bead06614c
21 sg:journal.1052742
22 schema:name Relation of operator Schmidt decomposition and CNOT complexity
23 schema:pagination 117-124
24 schema:productId N2d20a928a11745fea2fc807232d8f549
25 N621691e34d3b45d38f2d2c3af9106596
26 Nb0e4867d726f4793b2b84a729cd677d0
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051512303
28 https://doi.org/10.1007/s11128-008-0077-6
29 schema:sdDatePublished 2019-04-10T14:22
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nff1827c6a6ba4f03a7510a68751d6cf3
32 schema:url http://link.springer.com/10.1007%2Fs11128-008-0077-6
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N04169a8bd96d4ad8bb397f9113afd9ed rdf:first sg:person.015514174277.73
37 rdf:rest N969d12adc82043f9aa4fa184255e2e9c
38 N2d20a928a11745fea2fc807232d8f549 schema:name dimensions_id
39 schema:value pub.1051512303
40 rdf:type schema:PropertyValue
41 N621691e34d3b45d38f2d2c3af9106596 schema:name doi
42 schema:value 10.1007/s11128-008-0077-6
43 rdf:type schema:PropertyValue
44 N7fec0de0e9fa4991971bfb7f3943ad60 schema:volumeNumber 7
45 rdf:type schema:PublicationVolume
46 N969d12adc82043f9aa4fa184255e2e9c rdf:first sg:person.012271035421.08
47 rdf:rest rdf:nil
48 N9d0c51908beb4c19891ff1bead06614c schema:issueNumber 2-3
49 rdf:type schema:PublicationIssue
50 Nb0e4867d726f4793b2b84a729cd677d0 schema:name readcube_id
51 schema:value f562014aa571339c663fea645a743127fae6f099c945b79c3903f259e37bb1c3
52 rdf:type schema:PropertyValue
53 Nff1827c6a6ba4f03a7510a68751d6cf3 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 sg:journal.1052742 schema:issn 1570-0755
56 1573-1332
57 schema:name Quantum Information Processing
58 rdf:type schema:Periodical
59 sg:person.012271035421.08 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
60 schema:familyName Deiotte
61 schema:givenName Ron
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271035421.08
63 rdf:type schema:Person
64 sg:person.015514174277.73 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
65 schema:familyName Coffey
66 schema:givenName Mark W.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514174277.73
68 rdf:type schema:Person
69 sg:pub.10.1023/a:1022144002391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058874
70 https://doi.org/10.1023/a:1022144002391
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1088/1751-8113/40/31/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033106145
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/physreva.67.042313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037730438
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physreva.67.052301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051622412
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physreva.68.012318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040075623
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physreva.68.052311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012539794
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreva.69.010301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021129127
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreva.69.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001486495
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physreva.70.012310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022959379
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physreva.72.052323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046771841
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.89.057901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048604711
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
93 schema:name Department of Physics, Colorado School of Mines, 80401, Golden, CO, USA
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...