Complementarity and Additivity for Covariant Channels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-06

AUTHORS

N. Datta, M. Fukuda, A. S. Holevo

ABSTRACT

This paper contains several new results concerning covariant quantum channels in d ≥ 2 dimensions. The first part, Sec. 3, based on [4], is devoted to unitarily covariant channels, namely depolarizing and transpose-depolarizing channels. The second part, Sec. 4, based on [10], studies Weyl-covariant channels. These results are preceded by Sec. 2 in which we discuss various representations of general completely positive maps and channels. In the first part of the paper we compute complementary channels for depolarizing and transpose-depolarizing channels. This method easily yields minimal Kraus representations from non-minimal ones. We also study properties of the output purity of the tensor product of a channel and its complementary. In the second part, the formalism of discrete noncommutative Fourier transform is developed and applied to the study of Weyl-covariant maps and channels. We then extend a result in [16] concerning a bound for the maximal output 2-norm of a Weyl-covariant channel. A class of maps which attain the bound is introduced, for which the multiplicativity of the maximal output 2-norm is proven. The complementary channels are described which have the same multiplicativity properties as the Weyl-covariant channels. More... »

PAGES

179-207

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-006-0021-6

DOI

http://dx.doi.org/10.1007/s11128-006-0021-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019471996


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Datta", 
        "givenName": "N.", 
        "id": "sg:person.016400167317.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016400167317.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuda", 
        "givenName": "M.", 
        "id": "sg:person.07750107075.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750107075.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute, Mascow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/7/1/093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010362722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/45/l02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012935344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/45/l02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012935344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1862094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015008760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1498491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027934572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.904522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101544"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-06", 
    "datePublishedReg": "2006-06-01", 
    "description": "This paper contains several new results concerning covariant quantum channels in d \u2265 2 dimensions. The first part, Sec. 3, based on [4], is devoted to unitarily covariant channels, namely depolarizing and transpose-depolarizing channels. The second part, Sec. 4, based on [10], studies Weyl-covariant channels. These results are preceded by Sec. 2 in which we discuss various representations of general completely positive maps and channels. In the first part of the paper we compute complementary channels for depolarizing and transpose-depolarizing channels. This method easily yields minimal Kraus representations from non-minimal ones. We also study properties of the output purity of the tensor product of a channel and its complementary. In the second part, the formalism of discrete noncommutative Fourier transform is developed and applied to the study of Weyl-covariant maps and channels. We then extend a result in [16] concerning a bound for the maximal output 2-norm of a Weyl-covariant channel. A class of maps which attain the bound is introduced, for which the multiplicativity of the maximal output 2-norm is proven. The complementary channels are described which have the same multiplicativity properties as the Weyl-covariant channels.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-006-0021-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Complementarity and Additivity for Covariant Channels", 
    "pagination": "179-207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5cc6ed7fa4ec29447a3cbcd77c43fdf9a45c6a3d4242abbe72d8bdda9cfe06e4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-006-0021-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019471996"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-006-0021-6", 
      "https://app.dimensions.ai/details/publication/pub.1019471996"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-006-0021-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-006-0021-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-006-0021-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-006-0021-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-006-0021-6'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-006-0021-6 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N43c5ab694e2446e1b9e041489f34a54b
4 schema:citation https://doi.org/10.1063/1.1498491
5 https://doi.org/10.1063/1.1862094
6 https://doi.org/10.1088/0305-4470/38/45/l02
7 https://doi.org/10.1088/1367-2630/7/1/093
8 https://doi.org/10.1109/18.904522
9 schema:datePublished 2006-06
10 schema:datePublishedReg 2006-06-01
11 schema:description This paper contains several new results concerning covariant quantum channels in d ≥ 2 dimensions. The first part, Sec. 3, based on [4], is devoted to unitarily covariant channels, namely depolarizing and transpose-depolarizing channels. The second part, Sec. 4, based on [10], studies Weyl-covariant channels. These results are preceded by Sec. 2 in which we discuss various representations of general completely positive maps and channels. In the first part of the paper we compute complementary channels for depolarizing and transpose-depolarizing channels. This method easily yields minimal Kraus representations from non-minimal ones. We also study properties of the output purity of the tensor product of a channel and its complementary. In the second part, the formalism of discrete noncommutative Fourier transform is developed and applied to the study of Weyl-covariant maps and channels. We then extend a result in [16] concerning a bound for the maximal output 2-norm of a Weyl-covariant channel. A class of maps which attain the bound is introduced, for which the multiplicativity of the maximal output 2-norm is proven. The complementary channels are described which have the same multiplicativity properties as the Weyl-covariant channels.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N9a38aee13ba64fb7a075a7d260227981
16 Na9ae099b0bc64838bc0e38266c7d6686
17 sg:journal.1052742
18 schema:name Complementarity and Additivity for Covariant Channels
19 schema:pagination 179-207
20 schema:productId N829661a4e456479896f534588b4e14d1
21 Na81cd1c11e1448d19be7015233e5bade
22 Ne80ca1b53f804e8db1f762d8f32f4287
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019471996
24 https://doi.org/10.1007/s11128-006-0021-6
25 schema:sdDatePublished 2019-04-10T14:12
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N23724f33bbcc42d3bb39152d46fe5c4a
28 schema:url http://link.springer.com/10.1007%2Fs11128-006-0021-6
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N104fd0d4e9374e518fcbf1b1fd846d8a rdf:first sg:person.012742037634.56
33 rdf:rest rdf:nil
34 N23724f33bbcc42d3bb39152d46fe5c4a schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N43c5ab694e2446e1b9e041489f34a54b rdf:first sg:person.016400167317.83
37 rdf:rest Nc65c9bcf71734119a35f9d9b93344763
38 N829661a4e456479896f534588b4e14d1 schema:name doi
39 schema:value 10.1007/s11128-006-0021-6
40 rdf:type schema:PropertyValue
41 N9a38aee13ba64fb7a075a7d260227981 schema:issueNumber 3
42 rdf:type schema:PublicationIssue
43 Na81cd1c11e1448d19be7015233e5bade schema:name readcube_id
44 schema:value 5cc6ed7fa4ec29447a3cbcd77c43fdf9a45c6a3d4242abbe72d8bdda9cfe06e4
45 rdf:type schema:PropertyValue
46 Na9ae099b0bc64838bc0e38266c7d6686 schema:volumeNumber 5
47 rdf:type schema:PublicationVolume
48 Nc65c9bcf71734119a35f9d9b93344763 rdf:first sg:person.07750107075.27
49 rdf:rest N104fd0d4e9374e518fcbf1b1fd846d8a
50 Ne80ca1b53f804e8db1f762d8f32f4287 schema:name dimensions_id
51 schema:value pub.1019471996
52 rdf:type schema:PropertyValue
53 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
54 schema:name Biological Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
57 schema:name Biochemistry and Cell Biology
58 rdf:type schema:DefinedTerm
59 sg:journal.1052742 schema:issn 1570-0755
60 1573-1332
61 schema:name Quantum Information Processing
62 rdf:type schema:Periodical
63 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
64 schema:familyName Holevo
65 schema:givenName A. S.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
67 rdf:type schema:Person
68 sg:person.016400167317.83 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
69 schema:familyName Datta
70 schema:givenName N.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016400167317.83
72 rdf:type schema:Person
73 sg:person.07750107075.27 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
74 schema:familyName Fukuda
75 schema:givenName M.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750107075.27
77 rdf:type schema:Person
78 https://doi.org/10.1063/1.1498491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027934572
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1063/1.1862094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015008760
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1088/0305-4470/38/45/l02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012935344
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1088/1367-2630/7/1/093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010362722
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/18.904522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101544
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
89 schema:name Steklov Mathematical Institute, Mascow, Russia
90 rdf:type schema:Organization
91 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
92 schema:name Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...